• Title/Summary/Keyword: Impact Hammer Test

Search Result 129, Processing Time 0.023 seconds

Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact (반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung;Seo, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.648-655
    • /
    • 2020
  • The firing pin of modern automatic rifles detonates the primer of loaded ammunition via a hammer. During this process, the firing pin receives an impact load and repetitive force throughout the life of the rifle. An endurance test of a rifle showed that the firing pin breaks prematurely at 96.26% of life. Accordingly, a case study was conducted through cause analysis and a reconstruction test. Optical microscopy and scanning electron microscopy of the broken surface of the firing pin showed that a crack began in the circumferential direction of the surface, resulting in a fatigue crack to the core after repeated impact. Crack growth and fatigue destruction occurred at the end due to the repetitive impact and was estimated using a notch. For verification, a sample that produced a 0.03mm circumferential notch was broken at 64.25% of life in the reconstruction test. A test of breakage according to the notch types showed that a 0.3mm and a 0.5mm one-side notch were broken at 66.53% and 50.76%, respectively, and a 0.03mm six-point notch was broken at 85.65%. The endurance life of a sample firing pin with a rough surface and tool mark was examined, but an approximately 381 ㎛ internal crack formed. Through this study, failure for each notch type was considered. These results show that quality control of the notch and surface roughness is essential for ensuring the reliability of a component subjected to repeated impact.

An Experimental Study on the Free Vibration of Composite Plates with Various Shapes (다양한 형상을 갖는 복합재료 판의 자유진동에 대한 실험적 연구)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 1999
  • This paper describes the results of experiments to analyze the free vibration of the laminated composite and hybrid composite plates with various shapes and boundary conditions. The materials of specimens were the carbon fiber reinforced plastic (CFRP), the glass fiber reinforced plastic (GFRP), the GFRP-Aluminum hybrid composite and the CFRP-CFRP hybrid composite. The natural frequencies and nodal patterns of plates with various shapes were experimentally obtained by impact exciting test using an impact hammer and an accelerometer. The experimental results were presented with normalized frequency parameters. The effects of composite material properties, fiber orientation angles, various geometrical shapes and boundary conditions on the vibration characteristics of composite plates were evaluated. To compare and verify these experimental results, the finite element analysis was carried out, and was well agreed with experimental results.

  • PDF

A Study on the Dynamic Characteristics of Air Foil Bearings Using LS(Least Square)/IV(Instrumental Variable) Method (LS/IV 기법을 이용한 공기 포일 베어링의 동특성 계수에 관한 연구)

  • Jo, Jun-Hyeon;Ryu, Keun;Kim, Chang-Ho;Lee, Yong-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.677-684
    • /
    • 2004
  • This paper describes a method for identifying the dynamic characteristics of air foil bearings for high speed turbomachinerys with the LS/IV method. In fact identifying the characteristics of air foil bearings is very difficult work, and it is tried to identify it. Experiments were conducted to determine the structural dynamic and hydrodynamic characteristics of air foil bearings. Numerical predictions compare the static and dynamic force performances. The housing of the bearing on the journal was driven by the impact hammer which were used to simulate impact force acting on air foil bearings. The characteristics of air foil bearings were extracted from the frequency response function (FRF) by LS(Least Square) method and IV(Instrumental Variable) method. The experiment was tested at 0 rpm and $10000\sim16000rpm$. And the test results were introduced about the dynamic characteristics of air foil bearings, and also compared with theoritical results.

  • PDF

Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile (매입말뚝의 설계식 적정성 및 지지력 상향 가능성 분석 연구)

  • Park, Jong-Bae;Lee, Bum-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • To improve the pile design efficiency(design bearing capacity/the strength of materials) from 70 percent(160tonf) to 80 percent(190tonf), this paper analysed the existing pile loading test data and performed the precise dynamic loading test and Bi-directional loading test for the first time in Korea. Analysis result of the existing dynamic loading test data by Davisson method showed that bearing capacity of piles penetrated at weathered rock stratum(N=50/15) exceeded 190tonf. But the analysis result by CAPWAP method showed that piles less than the target bearing capacity were 40% due to the lack of impact energy. To get the target bearing capacity from the dynamic loading test, using the hammer over 6tonf to trigger the enough impact energy is necessary. Allowable bearing capacty of Bi-directional static loading test by Davisson method was 260.0~335tonf(ave. 285.3tonf) and exceeded overwhelmingly the target capacity. And this exceeded the bearing capacity of precise dynamic loading test(ave. 202.3tonf) performed on the same piles over 40%. The difference between the capacity of Bi-directional loading test and dynamic loading test was caused by the insufficient impact energy during dynamic loading test and increase by interlocking effect by near piles during Bi-directional static loading test.

Active Vibration Control Experiment on Cylindrical Shell equipped with MFC Actuators (MFC 작동기를 이용한 실린더 쉘의 능동진동제어 실험)

  • Bae, Byung-Chan;Jung, Moon-San;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.457-462
    • /
    • 2006
  • This paper is concerned with the active vibration control experiment on cylindrical shell equipped with Macro Fiber Composite(MFC) actuators. The MFC actuators were glued to the cylindrical shell in circumferential directions. To verify the theoretical result, vibration test using impact hammer and accelerometer was carried out. It was found from experiments that theoretical result predicts experimental result to some extent. The positive position feedback controllers were designed and applied to the test article. It was observed that the resonant amplitude of the fundamental mode was reduced by 20dB thus achieving active vibration control. The active vibration control of the response subject to non resonant excitation has been of interest. We developed the combination of the positive position feedback controller which can cope with the fundamental mode and the positive position feedback controller which can counteract the external disturbance with non resonant frequency. It was found from experiments that the hybrid controller can suppress the vibration amplitude successfully.

  • PDF

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

Experimental and analytical study on hydroelastic vibration of tank (선박내 접수탱크 진동에 대한 실험/이론적 연구)

  • Kim, Kuk-Su;Cho, H.D.;Kong, Y.M.;Heo, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.96-100
    • /
    • 2008
  • In this paper, a experimental and theoretical study is carried out on the hydroelastic vibration for a rectangular bottom and side plate of tank. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to plate vibration. It is assumed that the fluid is imcompressible and inviscid. Assumed mode method is utilized to the plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method. In order to verify the result, modal test was carried out for bottom/side plate of tank model by using impact hammer. It was found the fundamental natural frequency of bottom plate is lower than that of side plate of tank and theoretical result was in good agreement with that of commercial three-dimensional finite element program.

  • PDF

Model Tests for the Applicability of various Testing Devices for Measuring Degree of Compaction (여러 가지 다짐평가 장비의 적용성에 대한 모형 시험)

  • Back, In-Chul;Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Ju-Hyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1152-1158
    • /
    • 2007
  • Although various fast and simple, testing devices have been developed in many countries such as the U.S, Japan, and European countries, these testing devices are not commonly used in Korea. In this study, compaction fur the field density test was carried out with a hand-guided vibrating roller. The results of the field density test were compared with those of the new testing devices such as the geogauge, soil impact hammer(CASPFOL), light falling weight deflectometer(LFWD), dynamic cone penetration(DCP). Regression analyses were conducted with the data from new testing devices. The analysis results showed that the correlation coefficients were high in the range of $70{\sim}95%$.

  • PDF

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification

  • Pandey, Harsh Kumar;Hirwani, Chetan Kumar;Sharma, Nitin;Katariya, Pankaj V.;Dewangan, Hukum Chand;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.419-429
    • /
    • 2019
  • The effect of an increasing percentage of nanofiller (glass cenosphere) with Glass/Epoxy hybrid composite curved panels modeled mathematically using the multiscale concept and subsequent numerical eigenvalues of different geometrical configurations (cylindrical, spherical, elliptical, hyperboloid and flat) predicted in this research article. The numerical model of Glass/Epoxy/Cenosphere is derived using the higher-order polynomial type of kinematic theory in association with isoparametric finite element technique. The multiscale mathematical model utilized for the customized computer code for the evaluation of the frequency data. The numerical model validation and consistency verified with experimental frequency data and convergence test including the experimental elastic properties. The experimental frequencies of the multiscale nano filler-reinforced composite are recorded through the impact hammer frequency test rig including CDAQ-9178 (National Instruments) and LABVIEW virtual programming. Finally, the nano cenosphere filler percentage and different design associated geometrical parameters on the natural frequency data of hybrid composite structural configurations are illustrated through a series of numerical examples.