• 제목/요약/키워드: Impact Force

검색결과 1,417건 처리시간 0.031초

차량 저속 추돌의 연속 접촉력 모델 (Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts)

  • 한인환
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가 (Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force)

  • 민현진;임형준;김병규;김수현
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

진동절연 시스템의 충격력과 충격응답 해석 (Contact Force and Response Analysis of Vibration Isolated Systems)

  • 김준호;박윤식
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3185-3194
    • /
    • 1994
  • In this study, an impact model and impact response analysis method was suggested for the impacts between arbitrary shaped bodies. Unlike the impacts between geometrically simple structures, there is no rules to analyze the impacts between general elastic structures First of all, it has been attempted to explain the impoot between arbitrary elastic structures as the elastic deformation of a virtual contact spring in the vicinity of contact points. The contact stiffness and the exponent are determined from the Hertz's contact theory and F. E. analysis. In order to evaluate the validities and limitations of the proposed methods, an impact tester and the miniature of container, missile and isolators have been provided and tested experimentally. All the experiments were performed with various impact conditions. The results obtained by the proposed methods were directly compared with the measured values in terms of maximum contract force, contact duration, the shape of contact force and the structure responses. The computed contact force and responses, using this proposed methods, were very close to the measured results, unless any plastic deformations were presented.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

복합적층판의 저속충격시험 및 거동에 대한 실험적 연구 (An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

실충격원을 고려한 바닥충격음 저감방안의 평가 (Evaluations on isolation method of floor impact sounds by real impact source)

  • 유승엽;이평직;정영;전진용;류종관
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.366-370
    • /
    • 2006
  • In this study, characteristics of impact force and impact sound of impact source such as bang machine, impact ball, and children's jumping were review. Results of review showed that impact ball has most similar characteristic to real impact sources in terms of objective properties such as impact force and impact sound. The effects of various isolator on floor impact sound were also investigated in apartment building and test facilities building using bang machine an impact ball. From the field measurement, it was found that the difference in reduction sound level between bang machine and impact ball was relatively large and the reduction sound level by impact ball was much larger than bang machine.

  • PDF

소형 칩의 고속 표면실장을 위한 충격력 제어 장치의 설계 (A Design of Impact Control Device for High-speed Mounting of Micro-Chips)

  • 이덕영;김병만;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.121-121
    • /
    • 2000
  • This paper presents a design of macro-micro system for high-speed mounting of micro-chips. A macro motion device is driven by DC servomotor and ball screw mechanism. To obtain fast response, a micro motion device utilizes a precision elector magnetic actuator In order to reduce peak impact force, We evaluate the design parameters that have an effect on it. And a characteristic of response is simulated using PID controller in velocity and force control.

  • PDF

PVDF 압전필름의 굽힘에 대한 해석 (Bending Analysis of PVDF Piezoelectric Film)

  • 이용국;소형종;유영한;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.339-342
    • /
    • 1999
  • The equation of output voltage from the PVDF was derived. When impact force applied to the PVDF films of cantilever beam and one-end fixed, other-end supported beam structure, output voltage equation induced. Experimental output voltages by falling ball agreed quite well with induced theoretical data. This PVDF film showers to be in high possibility in a warning system of abnormal pulse rate and breathing, and in detecting impact force and/or mechanical energy.

  • PDF

바닥충격음 측정용 표준충격원과 실충격원의 특성 비교 (Comparison of Standard Floor Impact Sources with a Human Impact Source)

  • 이평직;정정호;박준홍;전진용
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.789-796
    • /
    • 2006
  • The characteristics of the four standard floor impact sources (impact ball, bang machine, tapping machine, modified tapping machine) and a human impact source (jumping children) were investigated. First, the mechanical impedance of each source were evaluated. Then, the impact force exposure level of each source were measured. The results showed that fundamental frequency and impedance produced by the impact ball are the most similar to those of the human impact source. The frequency characteristics of the impact ball were most similar to those of jumping children. Consequently, the impact ball more accurately reproduces human impact compared to the other standard impact sources. Therefore, the impact ball should be considered as the reliable impactor in evaluating floor impact noise.

대장내시경을 위한 자기 충격 액츄에이터 (Magnetic Impact Actuator for Robotic Endoscope)

  • 민현진;임형준;김병규;김수현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.839-843
    • /
    • 2001
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes are not seemed to be replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope able to maneuver safely in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfer momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjusting impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulation experiments show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

  • PDF