• Title/Summary/Keyword: Impact Ball

Search Result 325, Processing Time 0.029 seconds

Penetration Characteristic of CFRP laminate shell by the curvature -A focus of fracture mode by the penetration- (곡률을 고려한 CFRP 복합재 적층쉘의 관통특성 -관통에 의한 파괴모드를 중심으로-)

  • 조영재;김영남;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1434-1439
    • /
    • 2004
  • CFRP composite materials have wide application in structure materials of airplane, ships, and aero space vehicles because of their high strength and stiffness. This paper is to study the effects of curvature and orientation angle on the penetration characteristics of CFRP laminate shell. They are staked with 8 Ply specimens [0$_2$/90$_2$]$_{s}$, [0/90$_2$/0]$_{s}$ and the stacked of outer plates degree with 12 Ply specimens [0$_3$/90$_3$]$_{s}$, [0$_2$/90$_2$/0]$_{s}$ and [90$_3$/0$_3$], [90$_2$/0$_2$/90]S. They are manufactured to varied curvature radius (R=100,150,200mm and $\infty$). They are cured by heating to the appropriate harding temperature(13$0^{\circ}C$) by mean of a heater at the vaccum bag of the autoclave. Test specimens were prepared with dimensions 100mm$\times$140mm. When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistic-screen sensor located a known distance apart. In general, kinetic energy after impact-kinetic energy before impact rised in all specimens. This study observed a fracture mode inside the specimen after a penetration test using a digital camera and it examined a fracture mode and a penetration mode to stack of outer orientation angle and curvature.rvature.

  • PDF

Improvement in Grade of Sericite Ore by Dry Beneficiation (건식정제에 의한 견운모광의 품위향상연구)

  • Cho, Keon-Joon;Kim, Yun-Jong;Park, Hyun-Hae;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • A study on the dry beneficiation of sericite occurring in the Daehyun Mine of the Republic of Korea region as performed by applying selective grinding and air classification techniques. Quartz and sericite occurred in the raw ore as major components. The results of liberation using a ball mill and an impact mill showed that the contents of $R_2O$ were increased while $SiO_2$ was decreased in proportion to decreasing particle size. According to the XRD, XRF analysis and the EDS of SEM analysis, the ball mill gave a better grade product in $R_2O$ content than the impact mill when the particle size was the same. When the raw ore was ground by the impact mill with arotor speed 57.6 m/sec and then followed by 15,000rpm classification using an air classifier, the chemical composition of the over flowed product was 49.65wt% $SiO_2$, 32.15wt% $Al_2O_3$, 0.13wt% $Fe_2O_3$, 10.37wt% $K_2O$, and 0.14wt% $Na_2O$. This result indicates that the $R_2O$ contents were increased by 49.5% compared to that of the raw ore. From these results described above, it is suggested that hard mineral such as Quartz little ground by selective grinding using impact mill whereas soft mineral such as sericite easily ground to small size. As a result of that hard minerals can be easily removed from the finely ground sericite by air classification and the $R_2O$ grade of thus obtained concentrate was improved to higher than 10wt% which can be used for ceramics raw materials.

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill (교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Batjargal, Uyanga;Bor, Amgalan;Batchuluun, Ichinkhorloo;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

Synthesis of Titanium Silicides by Mechanical Alloying (기계적합금화에 의한 Ti Silicide 화합물의 합성)

  • 변창섭;이상호;김동관;이진형
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.250-257
    • /
    • 1998
  • The synthesis of titanium silicides ($Ti_3Si$, $TiSi_2$, $Ti_5Si_4$, $Ti_5Si_3$ and TiSi) by mechanical alloying has been investigated. Rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the last three phases during room-temperature high-energy ball milling of elemental powders. Such reactions appeared to be ignited by mechanical impact in an intimate, fine powder mixture formed after a critical milling period. During the high-energy ball milling, the repeated impact at contact points leads to a local concentration of energy which may ignite a self-propagating reaction. From in-situ thermal analysis, each critical milling period for the formation of $Ti_5Si_4$, $Ti_5Si_3$ and TiSi was observed to be 22, 35.5 and 53.5 min, respectively. $Ti_3Si$ and $TiSi_2$, however, have not been produced even till the milling period of 360 min due to lack of the homogeneity of the powder mixtures. The formation of titanium silicides by mechanical alloying and the relevant reaction rates appeared to depend upon the critical milling period, the homogeneity of the powder mixtures, and the heat of formation of the products involved.

  • PDF

Impact Behavior Simulation of Anisotropic Materials (이방성 재료의 충격거동에 관한 시뮬레이션)

  • Ahn, Kook-Chan;Jung, Dae-Sik;Kim, Bong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • A study was performed to investigate the dynamic behaviors of fiber-reinforced composite materials subjected to transversely low-velocity impact. For this purpose, the simulation of modified beam finite element based on higher order beam theory for two(isotropic and anisotropic) materials is carried out according to the changes of material property, stacking sequence, geometric dimension and impact velocity of steel ball, etc. Main composite materials for simulation are composed of $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_s$ and $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_s$ stacking sequences. The effectiveness of this simulation for qualitative and quantitative evaluations in composite materials subjected to foreign object impact was established.

A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates Under High Temperature (고온분위기하에서 탄소섬유강화 복합재적층판의 충격손상과 잔류굽힘강도)

  • 양인영;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1930-1938
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CFRP orthotropic laminated plates, which have two-interfaces$[0_6^{\circ}/90_7^{\circ}]_s$ and four-interfaces$[0_3^{\circ}/90_6^{\circ}/0_3^{\circ}]_s$. The interrelations between the impact energy vs. delamination area, the impact energy vs. residual bending strength, and the interlayer delamination area vs. the decrease of the residual flexural strength of carbon fiber epoxy composite laminates subjected to FOD(Foreign Object Damage) under high temperatures were experimentally observed.

Dynamic Analysis of Flexible Mechanisms with Clearances Using Finite Elements (유한요소를 이용한 유연성 간극기구의 동적 해석)

  • 길계환;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.288-297
    • /
    • 1990
  • The method of analyzing flexible mechanisms with clearances was studied considering flexibility of beams in the mechanism using finite elements. Both ends of a beam were modeled as free following Dubowsky's impact pair model. Instead some force constraints were imposed at imposed at the connections between adjoining links. Coulomb model has been developed using dry frictions in place of tangential damping forces in the impact pair model and the contact compliance and damping coefficient approximated in a form of root function were used. As examples, impacts of a rigid ball in a cylinder, impact beam model and four-bar mechanisms made up of three flexible links with clearance connections were simulated numerically. The results from examples showed similar but a little bit smaller magnitude of impact forces compared with published studies.

Dynamic characteristics of Sound Radiated from a Vibrating Plate by Impact Force (충격가진에 의한 진동판의 방사음에 대한 동특성)

  • 오재응
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.48-58
    • /
    • 1983
  • The transient sound radiation from the impact between a steel ball and a thick plate is analyzed theoretically and compared with experiment results. The derivation process itself is difficult to analyze sound radiation characteristics theoretically for a thick plate with some resonances but may be investigated from measured data. During mechanical impacts, arbitrary driving point importance for an elastic system enables to predict by using mechanical importance method. In order to obtain approximate solution for an impact model testing, the surface Helmholtz integral formulation based on the integral expression for pressure in the field in terms of surface pressure and normal velocity is used as a basis. A simple expression is developed for an impulsive response function, which is time dependent velocity potential and pressure for an impact may then be computed by a convolution of exciting force. In estimating of elastic-acoustical correlation problems, mechanical inertance, overall transfer function and radiation resistance obtained by signal processing techniques are used. The usefulness is confirmed by applying these methods prediction of arbitray driving pint inertance, radiated sound pressure and exciting force.

  • PDF

Impact Damages and Residual Strength of CFRP Laminates under the Hygrothermal Environment (고온.고습 환경에서 CFRP 적층재의 충격손상와 잔류강도)

  • Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3748-3758
    • /
    • 1996
  • This study is to investigate experimentally relationships between the impact energy and moisture absorption characteristies vs.the residual bending strength with the variation of stacking seqences. When Carbon-fiber reinforced plastics(CFRP) impact-induced laminates are subjected to the high temperatures and hygrothermal effects, it is found that what CFRP laminates are impacted by a steel ball (5 mm in diametar) ; thus, the generated delamination is observed by the ultrasonic microscope. And the residual bending strength is evaluated by a three-point bending test. Also, a thermostat is used in test with the unimpacted and impacted specimens for the moisture experimentaiton. The percision electro lever scles is used to measure the moisture content(1/10, 000g).

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.