• Title/Summary/Keyword: Impact

Search Result 37,120, Processing Time 0.052 seconds

Reduction of Floor Impact Noise and Impact Force for PVC Floor Covering and Floor Mat (PVC 바닥 마감재와 바닥 매트의 바닥충격음 및 충격력 저감)

  • Mun, Dae-Ho;Song, Guk-Gon;Lee, Cheol-Seung;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.501-508
    • /
    • 2014
  • Floor finishing materials such as floor coverings and floor mats can reduce floor impact noise easily. When an impact was applied to the floor, its finishing material is deformed and the impact force that was applied to the concrete slab is changed. The softer finishing materials were, the more impact force decreased. An experimental study was performed using 14 PVC floor coverings and 16 floor mats to capture the characteristics of impact force and impact noise in the residential buildings. The test results show that the impact force spectrum and the floor impact noise spectrum have a linear relationship in the case of a bare concrete slab, and the characteristics of impact force reduction are the same as those of floor impact noise reduction.

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

An Experiment Study on Floor-Impact Sound Insulation by Resilient Materials in Apartment Buildings (완충재의 종류에 따른 공동주택 바닥충격음 차단성능에 관한 실험연구)

  • Youn, Se Cheol;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.217-225
    • /
    • 2005
  • In apartment buildings, floor-impact sound has bean regarded as the major source which induces complaints from residents. It is mainly due to the use of light-weight structures. The vibration produced by impact on one part of an apartment building would travel as far as the other parts of structure with a little alleviation. As a result, the impact sound from upstairs has been regarded as a main source of noise causing discontentment among occupants. This study was carried out to measure the floor-impact sound levels and evaluate the insulation performance of floor-impact sound for nine apartment buildings. The floor-impact sound levels were measured for twenty-five On-dol floor structures and various factors which influence the floor-impact sound were analyzed.

A study on the impact prediction in environmental impact statement (환경영향평가서 영향예측에 대한 연구)

  • 이영경
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.3
    • /
    • pp.89-100
    • /
    • 1997
  • The purpose of this paper was to analyze the content of impact prediction in EISS, in order to find the degree of the acuracy of impact prediction . 30 EISS were selected as analysis objects through variance miximization strategy. Content analysis of the selected EISS was performed by 5 analysis items, such as quantification of measurement, range of impact area, time frame of impact, likelihood of impact, and explict characterization of impact significance. The results showed that the accuracy investigated by the 5 items was very low. In conclusion, 5 suggestions were proposed in order to improve the credibility of EIS as a scientific report. The 5 suggestions were : 1) impact prediction should be described by quantitative measurement; 2) In establishing the time frame of the impact and the referent populatioin influenced by the impact, the characteristics of the proposed action should be carefully considerd; 3) the significance of the predicted impact should be quantitatively described; 4) specific description should also be used in the likelihood or the probability of the predicted impact in a real world; 5) equal emphasis should be put on the three environment, including natural and social as well as living environment.

  • PDF

Basic Study on Impact Analysis of Automobile (자동차 충돌 해석에 관한 기초 연구)

  • Cho, Jae-Ung;Min, Byung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 2009
  • This study is to analyze the impact of automotive body with computer simulation. The total deformation, equivalent strain and strain and principal stress are analyzed respectively in case of front, rear and side impacts. The maximum total deformation of side impact is more than 6 times as large as that of rear impact. The maximum equivalent strain or stress of side impact is more than 4 times as large as that of rear impact. These deformation, strain and stress of front impact are a little more than those of rear impact. The maximum principal stress of side impact is more than 4.5 times as large as that of rear impact. This stress of front impact is a little more than that of rear impact.

  • PDF

Floor Impact Noise Measurement and Evaluation Method Using Impact Ball (임팩트 볼을 활용한 바닥충격음 측정 및 평가)

  • Jeon, Jin-Yong;Jeong, Jeong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1160-1168
    • /
    • 2005
  • Floor impact noise isolation performance of reinforced concrete floors was investigated through new measurement method using impact bail. Strong impact force in Bow frequency band below 63 Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight Impact noise but heavy-weight impact noise measurement and evaluation using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

Performance of floor coverings by impact sound (실 충격원에 대한 바닥마감재 성능 분석)

  • Chung, Jinyun;Im, Jungbin;Lee, Sungchan;Kim, Kyoungwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.419-422
    • /
    • 2014
  • Floor impact sound level is affected by various factors. This study was examined about impact sources and floor coverings influenced at floor impact sound. So this study wishes to get method to reduce sound pressure level of receiving room. Light-weight impact sound in mid frequency and Heavy-weight impact sound in low frequency was affected by floor coverings. Therefore, method to reduce floor impact sound level is to use proper floor coverings. Some coverings can amplify the heavy-weight impact sound in low frequency. Floor impact sound sources used measurement and analysis were standard heavy-impact source(Tapping, Bang, Ball) and living impact sources(Cleaner, Chair, Toy-car, Soccer ball). And Floor coverings used measurements were various thickness vinyl, laminate(or ply-wood) floor. Especially vinyl floor coverings were very effective method to reduce floor impact.

  • PDF

Impact energy absorbing effect by the buckling of impact limiter's case of radioactive material transport cask (방사성물질 수송용기 충격완충제 케이스의 좌굴변형에 의한 충격흡수효과)

  • Ku, Jeong-Hoe;Seo, Gi-Seok;Min, Deok-Gi;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.826-833
    • /
    • 1998
  • The energy-absorbing characteristic of impact limiters affects the cask design so significantly that it should be evaluated as accurate as possible. The objective of this study is to find the influence of the impact limiter's steel case and gusset plates which enclose the shock absorbing cellular material on the impact energy absorption. The influence of impact limiter's steel case and gusset plate stiffeners on the impact energy absorption behavior under horizontal drop impact was evaluated for a radioactive isotope transport cask. Though the impact limiters mitigate the impact damage of the cask, the impact limiter's steel case and gusset plate stiffeners increase the impact force so significantly that should be designed as soft as possible. The impact analysis without considering impact limiter's steel case and gusset plates stiffener gives non-conservative results, so the stiffness of the steel case and gusset plates should be considered in impact analysis.

Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials (세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.