• 제목/요약/키워드: Immunoblot analysis

검색결과 267건 처리시간 0.029초

Cross-linking of CD80 and CD86 Diminishes Expression of CD54 on EBV-transformed B Cells through Inactivation of RhoA and Ras

  • Park, Ga-Bin;Kim, Yeong-Seok;Song, Hyun-Keun;Kim, Seong-Han;Park, Dong-Man;Lee, Wang-Jae;Hur, Dae-Young
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.390-398
    • /
    • 2011
  • Background: Epstein Barr virus (EBV) infected B cells are transformed into lymphoblastoid cell lines. Some researchers suggested some a few similarities between this process and carcinogenesis. We observed the expression of CD80 and CD86, co-stimulatory molecules on EBV-transformed B cells and changes of CD54 expression after stimulation of CD80 and CD86. Methods: CD80 and CD86 were stimulated using anti-CD80 and anti-CD86 monoclonal antibodies. To assess apoptosis and surface protein expression, flow cytometric analysis was performed. Intracellular signal molecules were evaluated by RT-PCR and immunoblot. Morphology and localization of proteins were examined using inverted or confocal microscope. Results: Cross-linking of CD80 and CD86 induced apoptosis and interfered with proliferation of EBV-transformed B cells, and dispersion of clumped cells. We also examined that their stimulation induced ROS accumulation and reduced CD54 expression. Interestingly, we observed that CD80 and CD86 diminished the expression of CD54 in different methods. Both CD80 and CD86 downregulated activation of focal adhesion kinase. CD80 stimulus inhibited CD54 expression through mainly RhoA inactivation, while CD86 down-regulated Ras and JNK phosphorylation. Conclusion: These results suggest that co-stimulatory CD80 and CD86 molecules, expressed EBV-transformed B cells, may play a role in apoptosis and cell adhesion.

Identification of Ligand for Salivary Lipocalin Secreted from the Uterine Endometrium during Early Pregnancy in Pigs

  • Seo, Hee-Won;Kim, Min-Goo;Ka, Hak-Hyun
    • 한국수정란이식학회지
    • /
    • 제24권4호
    • /
    • pp.259-263
    • /
    • 2009
  • Salivary lipocalin (SAL1) is a member of the lipocalin protein family that has a property to associate with many lipophilic molecules and was identified as pheromone-binding protein in pigs. Our previous study has shown that SAL1 is expressed in the uterine endometrium in a cell type- and implantation stage-specific manner and secreted into the uterine lumen in pigs. However, function of SAL1 in the uterus during pregnancy in pigs is still not known. To understand physiological function of SAL1 in the uterine endometrium during pregnancy in pigs, it needs to elucidate the ligand(s) for SAL1. Thus, to identify the ligand for SAL1 in the porcine uterus, we collected uterine luminal fluid from pigs on day 12 of pregnancy by flushing with PBS. Proteins from the uterine luminal fluid were separated by ion exchange chromatography and gel filtration. Fractions containing SAL1 protein were pooled and concentrated. Immunoblot analysis confirmed successful purification of SAL1. Then, we extracted lipids from the purified SAL1 protein and analyzed the lipids by liquid chromatography-mass spectrometry, and predicted to be steroid hormones and prostaglandins as SAL1 ligands. Results in this study showed that SAL1 protein in the uterine secretions has a small lipophilic molecule as a natural ligand. Further characterization of ligand extracted from purified SAL1 will be useful for understanding physiological function of SAL1 during pregnancy and its application to increase the pregnancy rate in pigs.

유청단백질 Glycomacropeptide에서 분리한 NANA의 안전성 및 염증저하 메카니즘 구명 연구 (Anti-inflammatory Effects and Its Mechanisms of NANA (N-Acylneuraminic Acid) Isolated from Glycomacropeptide)

  • 김민호;김재홍;이윤경;김완식;김희경
    • Journal of Dairy Science and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.17-23
    • /
    • 2011
  • The focus of this study was to clarify the relation between the nitric oxide (NO) production and cytokine expression including tumor necrosis factor-${\alpha}$ (TNF) and interleukin-6 (IL-6), and also investigated the effect of G-NANA (N-acylneuraminic acid isolates from glycomacropeptide) or S-NANA (Synthetic N-acylneuraminic acid) on LPS stimuli from RAW264.7 cell. The NANA is the predominant sialic acid found in mammalian cells and G-NANA is isolation of GMP (GMP is a valuable bioactive peptide with a varying degree of glycosylation including sialic acid). The lipopolysaccharide (LPS) of Gram-negative bacteria induces the expression of cytokines and potent inducers of inflammatory cytokines such as TNF-${\alpha}$ and IL-6. In this experiment, upon stimulation with increasing concentrations of chitosan, the LPS-stimulated TNF-${\alpha}$ and IL-6 secretion was significantly recovered with in the incubation media of RAW264.7 cells. Consistently, RT-PCR with mRNA and immunoblot analysis with anti-cytokine antiserum including TNF-${\alpha}$ and IL-6 showed that the amount of TNF-${\alpha}$ and IL-6 secretion in the incubation media recovered with the concentration of chitosan. The LPS-stimulated NO secretion was significantly recovered with in the 6 and 12 h incubation media of RAW264.7 cells, too. The recovery effect of G-NANA on IL-6 and NO secretion may be induced via the stimulus of TNF-${\alpha}$ in RAW264.7 cell. These results once again suggest that G-NANA may have the anti-inflammatory effect via the stimulus of TNF-${\alpha}$ in the LPS-stimulated inflammation in RAW264.7 cells.

  • PDF

전갈 메탄올추출물이 LPS로 유도된 Raw 264.7 cell에서의 nitric oxide 및 cytokine에 미치는 영향 (Inhibitory Effect of Scorpion MeOH Extract on Nitric Oxide and Cytokine Production in Lipopolysaccharide - Activated Raw 264.7 Cells)

  • 최준혁;이종록;지선영;김상찬
    • 동의생리병리학회지
    • /
    • 제21권3호
    • /
    • pp.721-727
    • /
    • 2007
  • Scorpion (SCP) has been clinically used for the treatment of endogenous wind to relieve convulsion, clearing away toxins, resolving hard masses and removing obstruction in the collaterals to relieve pain. Recent studies showed that scorpion toxins that affect the activating mechanism of sodium channels and indian black scorpion venom induced anti-proliferative and apoptogenic activity against human leukemic cell lines U937 and K562. There is lack of studies regarding the effects of SCP on the immunological activities. The present study was conducted to evaluate the effect of SCP on the regulatory effects of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. After the treatment of SCP MeOH extract dissolved in media for 1 h prior to the addition of lipopolysaccharide (LPS: 1 ${\mu}$g/ml), cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. Inducible nitric oxide synthase (iNOS) was determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. As results, SCP inhibited the production of nitrite and nitrate (0.3 and 1.0 mg/ml), iNOS and p-$I_KB_{\alpha}$ protein, tumor necrosis factor-${\alpha}$ (0.3 and 1.0 mg/ml), interleukin-1${\beta}$ (0.3 and 1.0 mg/ml) and interleukin-6 (1.0mg/ml) in Raw 264.7 cells activated with LPS. These findings suggest that SCP can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

Transformation of Mouse Liver Cells by Methylcholanthrene Leads to Phenotypic Changes Associated with Epithelial-mesenchymal Transition

  • Oh, Jiyun;Kwak, Jae-Hwan;Kwon, Do-Young;Kim, A-Young;Oh, Dal-Seok;Je, Nam Kyung;Lee, Jaewon;Jung, Young-Suk
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.261-266
    • /
    • 2014
  • Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) have been implicated in cancer development and progression. However, the effects of PAHs on carcinogenesis are still poorly understood. Here, we characterized a mouse cancer cell line BNL 1ME A. 7R.1 (1MEA) derived by transformation of non-tumorigenic liver cell line BNL CL.2 (BNL) using 3-methylcholanthrene (3MC), a carcinogenic PAH. RT-PCR and immunoblot analysis were used to determine the expression level of mRNA and proteins, respectively. To determine functionality, cell motility was assessed in vitro using a transwell migration assay. Both mRNA and protein levels of E-cadherin were significantly decreased in 1MEA cells in comparison with BNL cells. While the expression levels of mesenchymal markers and related transcription factors were enhanced in 1MEA cells, which could lead to increase in cell motility. Indeed, we found that 7-day exposure of BNL cells to 3-MC reduced the level of the adhesion molecule and epithelial marker E-cadherin and increased reciprocally the level of the mesenchymal marker vimentin in a dose-dependent manner. Taken together, these results indicate that the process of epithelial-mesenchymal transition (EMT) may be activated during premalignant transformation induced by 3-MC. A mechanism study to elucidate the relation between 3-MC exposure and EMT is underway in our laboratory.

열다한소탕(熱多寒少湯) 가감방(加減方)의 자가탐식(自家貪食) 유도 활성과 관련 단백질 탐색 (Autophagy inducing Effect of modified Yeoldahanso-tang and its related Proteins in SH-SY5Y cells)

  • 김희주;배나영;장문희;양현옥;안택원
    • 사상체질의학회지
    • /
    • 제25권3호
    • /
    • pp.208-217
    • /
    • 2013
  • Objectives Modified Yeolda-Hanso tang (MYH) is a traditional herbal formula in Korea for various diseases. MYH is containing the 10 herbs : Pueraria lobata (Willd.) Ohwi, Angelica tenuissima Nakai, Scutellaria baicalensis Georgi, Platycodon grandiflorum (Jacq), Angelicae Dahurica, Cimicifuga heracleifolia Kom, Raphanus sativa L., Polygala tenuifolia (Willd), Acorus gramineus Soland and Dimocarpus longan Lour. The 10 herbs is constituted as a ratio of the 6:4:2:1:2:2:2:4:6:6. We investigated neuroprotective effects of MYH on human neuroblastoma SH-SY5Y cells and evaluated the ability of MYH to prevent and treat for neurodegenerative diseases such as Parkinson's disease via basal autophagy enhancement. Methods Pharmacological induction of Autophagy by MYH in SH-SY5Y cells: Induction of autophagy by MYH in human neuroblastoma SH-SY5Y cells was carreid out by immunoblot analysis with several autophagy markers. SH-SY5Y cells were treated with MYH at the concentration of 400 and $800{\mu}g/ml$ for 24 hr. Specifically, the autophagosome proteins LC3 II and Atg5 levels were increased and autophagy pathway related proteins such as beclin-1, PI3 Kinase class III protein, ULK1, mTOR and AMPK were activated. Conclusions MYH can enhance the induction of autophagy through key regulator AMPK, mTOR, and Beclin-1 and it should be considered as a possible candidate of neuroprotective agents for such as Parkinson's disease.

HepG2 세포에서 까마귀쪽나무 과육 열수 추출물의 소포체 스트레스 억제 효능 (Inhibitory Effects of Litsea japonica Flesh Water Extract against Endoplasmic Reticulum Stress in HepG2 Cells)

  • 김은옥;제갈경환;김재광;이주상;박정아;김상찬;조일제
    • 대한한의학방제학회지
    • /
    • 제26권4호
    • /
    • pp.307-318
    • /
    • 2018
  • Objectives : Endoplasmic reticulum (ER) stress designates cellular responses to the accumulation of misfolded and unfolded proteins in ER, which is related to a variety of liver diseases. Present study investigated the inhibitory effects of Litsea japonica flesh water extract (LJE) aganist ER stress. Methods : After HepG2 cells were pretreated with LJE and subsequently exposed to tunicamycin (Tm) or thapsigargin (Tg), expression of C/EBP homologous protein (CHOP), glucose regulated protein 78 kDa (GRP78), asparagine synthetase (ASNS), and endoplasmic reticulum DnaJ homologue 4 (ERDJ4) were determined by immunoblot and real-time PCR analysis. Three canonical signaling pathways in response to ER stress were examined to explore molecular mechanisms involved. Results : Pretreatment of 1 mg/mL LJE inhibited Tm- or Tg-induced CHOP expression, while L. japonica fruit water extract did not. In addition, LJE decreased the levels of GRP78, ASNS, and ERDJ4 mRNA by Tm. Moreover, phosphorylations of eukaryotic translation initiation factor $2{\alpha}$ and inositol-requiring enzyme 1, expression of nuclear form of activating transcription factor $6{\alpha}$, and transactivation of ER stress response element- and unfolded protein response element-harboring luciferase activities were inhibited by LJE pretreatment. Conclusions : Present results suggest that LJE would be a candidate to prevent or treat ER stress-mediated liver injuries.

Anti-growth Effects of Imatinib and GNF5 via Regulation of Skp2 in Human Hepatocellular Carcinoma Cells

  • Kim, Sung Hyun;Kim, Myoung-Ok;Kim, Ki-Rim
    • Journal of Cancer Prevention
    • /
    • 제23권4호
    • /
    • pp.170-175
    • /
    • 2018
  • Background: Human hepatocellular carcinoma (HCC) is a common liver tumor and the main cause of cancer-related death. Tyrosine kinase inhibitors, such as imatinib and GNF5 which were developed to treat chronic myelogenous leukemia, regulate the progression of various cancers. The aim of this study was to confirm the anti-tumor activity of tyrosine kinase inhibitors through regulation of S-phase kinase-associated protein 2 (Skp2), an important oncogenic factor in various cancer cells, in human hepatocarcinoma SK-HEP1 cells. Methods: Cell viability and colony formation assays were conducted to evaluate the effects of imatinib, GNF5 and GNF2 on the growth of SK-HEP1 cells. Using immunoblot analysis, we assessed change of the activation of caspases, PARP, Akt, mitogen-activated protein kinases, and Skp2/p27/p21 pathway by imatinib and GNF5 in SK-HEP1 cells. Using sh-Skp2 HCC cells, the role of Skp2 in the effects of imatinib and GNF5 was evaluated. Results: Imatinib and GNF5 significantly inhibited the growth of SK-HEP1 cells. Treatment of imatinib and GNF5 decreased Skp2 expression and Akt phosphorylation, and increased the expression of p27, p21, and active-caspases in SK-HEP1 cells. In sh-Skp2 HCC cells, cell growth and the expression of Skp2 were inhibited by more than in the mock group treated with imatinib and GNF5. Conclusions: These results suggest that the anti-growth activity of tyrosine kinase inhibitors may be associated with the regulation of p27/p21 and caspases through Skp2 blockage in HCC cells.

The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling

  • Oh, Jisun;Yoon, Hyo-Jin;Jang, Jeong-Hoon;Kim, Do-Hee;Surh, Young-Joon
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.421-430
    • /
    • 2019
  • Background: The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recurrence and resistance to anticancer therapy. In our present study, we investigated whether the standardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer stem cell-like features through regulation of self-renewal activity. Methods: The effects of RGE and Rg3 on the proportion of $CD44^{high}/CD24^{low}$ cells, as representative characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehydrogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres were verified by immunoblot analysis. Results: Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the populations of $CD44^{high}/CD24^{low}$ in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expression of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres. Suppression of the manifestation of breast cancer stem cell-like properties by Rg3 was mediated through the blockade of Akt-mediated self-renewal signaling. Conclusion: This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.

NF-𝜅B억제를 통한 청심양격산(淸心凉膈散)의 항염증 효과 (Anti-inflammatory Effects of Cheongsimyanggyeok-san via NF-𝜅B Inhibition)

  • 김난이;김연수;지선영;황보민
    • 한방안이비인후피부과학회지
    • /
    • 제32권2호
    • /
    • pp.11-23
    • /
    • 2019
  • Objectives : The purpose of this study is to investigate the anti-inflammatory effect of Cheongsimyanggyeoksan(CYS) water extract in vitro and in vivo. Methods : To evaluate the anti-inflammatory effect of CYS, Raw 264.7 cells were pretreated with $3-300{\mu}g/m{\ell}$ of CYS for 1h, and then exposed to $1{\mu}g/m{\ell}$ of LPS. The cell viability was detected by MTT assay. Productions of nitric oxide(NO) and pro-inflammatory cytokines were measured in culture media. Protein levels of inducible nitric oxide synthase(iNOS) and Nuclear factor-${\kappa}$B($NF-{\kappa}B$) were determined by immunoblot analysis. The effect of CYS on acute inflammation in vivo was evaluated thorugh measurment of carrageenan-induced paw edema. Results : In vitro study, cell viability assay CYS treatment of $3-300{\mu}g/m{\ell}$ has no cytotoxicity in Raw 264.7 cells. LPS-induced NO production was significantly inhibited by pretreatment with $30-300{\mu}g/m{\ell}$ of CYS. Production of interleukin-6, -$1{\beta}$ and tumor necrosis factor-${\alpha}$ by LPS were significantly decreased by CYS pretreatment. CYS reduced LPS-mediated iNOS expression. Moreover, CYS significantly induced $I-{\kappa}B{\alpha}$ expression and reduced $NF-{\kappa}B$ expression. In vivo study, CYS significantly reduced the increases of paw swelling. Conclusions : These results suggest the clinical basis of CYS for the treatment of inflammatory diseases.