• Title/Summary/Keyword: Immunity responses

Search Result 451, Processing Time 0.035 seconds

Galectin-1 from redlip mullet Liza haematocheilia: identification, immune responses, and functional characterization as pattern recognition receptors (PRRs) in host immune defense system

  • Chaehyeon Lim;Hyukjae Kwon;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.11
    • /
    • pp.559-571
    • /
    • 2022
  • Galectins, a family of ß-galactoside-binding lectins, have emerged as soluble mediators in infected cells and pattern recognition receptors (PRRs) responsible for evoking and regulating innate immunity. The present study aimed to evaluate the role of galectin-1 in the host immune response of redlip mullet (Liza haematocheilia). We established a cDNA database for redlip mullet, and the cDNA sequence of galectin-1 (LhGal-1) was characterized. In silico analysis was performed, and the spatial and temporal expression patterns in gills and blood in response to lipopolysaccharide polyinosinic:polycytidylic acid, and Lactococcus garvieae were estimated via quantitative real-time PCR. Functional assays were conducted using recombinant protein to investigate carbohydrate binding, bacterial binding, and bacterial agglutination activity. LhGal-1 was composed of 135 amino acids. Conserved motifs (H-NPR, -N- and -W-E-R) within the carbohydrate recognition domain were found in LhGal-1. The tissue distribution revealed that the healthy stomach expressed high levels of LhGal-1. The temporal monitoring of LhGal-1 mRNA expression in the gill and blood showed its significant upregulation in response to immune challenges with different stimulants. rLhGal-1 exhibited binding activity in response to carbohydrates and bacteria. Moreover, the agglutination of rLhGal-1 against Escherichia coli was observed. Collectively, our findings suggest that LhGal-1 may function as a PRR in redlip mullet. Furthermore, LhGal-1 can be considered a significant gene to play a protective role in redlip mullet immune system.

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity

  • Hye Won Lee;Yun Shin Chung;Tae Jin Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.5.1-5.15
    • /
    • 2020
  • The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim;Inae Jung;Mi Eun Kim;Jun Sik Lee
    • Journal of Integrative Natural Science
    • /
    • v.17 no.2
    • /
    • pp.59-65
    • /
    • 2024
  • Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.

A Small Epitope Tagging on the C-Terminus of a Target Protein Requires Extra Amino Acids to Enhance the Immune Responses of the Corresponding Antibody

  • Kyungha Lee;Man-Ho Cho;Mi-Ju Kim;Seong-Hee Bhoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1222-1228
    • /
    • 2024
  • Protein-specific antibodies are essential for various aspects of protein research, including detection, purification, and characterization. When specific antibodies are unavailable, protein tagging is a useful alternative. Small epitope tags, typically less than 10 amino acids, are widely used in protein research due to the simple modification through PCR and reduced impact on the target protein's function compared to larger tags. The 2B8 epitope tag (RDPLPFFPP), reported by us in a previous study, has high specificity and sensitivity to the corresponding antibody. However, when attached to the C-terminus of the target protein in immunoprecipitation experiments, we observed a decrease in detection signal with reduced immunity and low protein recovery. This phenomenon was not unique to 2B8 and was also observed with the commercially available Myc tag. Our study revealed that C-terminal tagging of small epitope tags requires the addition of more than one extra amino acid to enhance (restore) antibody immunities. Moreover, among the amino acids we tested, serine was the best for the 2B8 tag. Our findings demonstrated that the interaction between a small epitope and a corresponding paratope of an antibody requires an extra amino acid at the C-terminus of the epitope. This result is important for researchers planning studies on target proteins using small epitope tags.

Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines

  • Sang-Hyun Kim;Erica Espano;Bill Thaddeus Padasas;Ju-Ho Son;Jihee Oh;Richard J. Webby;Young-Ran Lee;Chan-Su Park;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.19.1-19.15
    • /
    • 2024
  • The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness

  • Ji Chul Nam;Padam Shekhar Bhatt;April Bonnard;Dinesh Pujara;Hong-Gu Kang
    • The Plant Pathology Journal
    • /
    • v.40 no.5
    • /
    • pp.438-450
    • /
    • 2024
  • Arabidopsis MORC1 (Microrchidia) is required for multiple levels of immunity. We identified 14 MORC1-interacting proteins (MIPs) via yeast two-hybrid screening, eight of which have confirmed or putative nuclear-associated functions. While a few MIP mutants displayed altered bacterial resistance, MIP13 was unusual. The MIP13 mutant was susceptible to Pseudomonas syringae, but when combined with morc1/2, it regained wild-type resistance; notably, morc1/2 is susceptible to the same pathogen. MIP13 encodes MED9, a mediator complex component that interfaces with RNA polymerase II and transcription factors. Expression analysis of defense genes PR1, PR2, and PR5 in response to avirulent P. syringae revealed that morc1/2 med9 expressed these genes in a slow but sustained manner, unlike its lower-order mutants. This expression pattern may explain the restored resistance and suggests that the interplay of MORC1/2 and MED9 might be important in curbing defense responses to maintain fitness. Indeed, repeated challenges with avirulent P. syringae triggered significant growth inhibition in morc1/2 med9, indicating that MED9 and MORC1 may play an important role in balancing defense and growth. Furthermore, the in planta interaction of MED9 and MORC1 occurred 24 h, not 6 h, post-infection, suggesting that the interaction functions late in the defense signaling. Our study reveals a complex interplay between MORC1 and MED9 in maintaining an optimal balance between defense and growth in Arabidopsis.

Adjuvant Effect of PAMAM Dendrimer on the Antigenicity of Keyhole Limpet Hemocyanin in Balb/c Mice (Balb/c 마우스에서 Keyhole limpet hemocyanine (KLH)의 항원성에 대한 PAMAM dendrimer 의 면역증강 효과)

  • Lee, Ga-Young;Kim, Min Jee;Kim, So Yeon;Lee, Kyung Bok;Oh, Dong Hyun;Cho, Young Ho;Yoo, Yung Choon
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.905-911
    • /
    • 2020
  • The adjuvant effect of PAMAM dendrimer G4 (PAMAM) on the induction of humoral and cellular immune responses against keyhole limpet hemocyanin (KLH) was examined. Mice were immunized subcutaneously twice at two-week intervals with KLH, with or without PAMAM dendrimer (100 ㎍/mouse), and the mice immunized with KLH+PAMAM showed significantly higher antibody titers against KLH than those immunized with KLH alone. The assay for determining the isotypes of the antibodies showed that PAMAM augmented the KLH-specific antibody titers of IgG1, IgG2a, IgG2b, IgG3, and IgM. In addition, mice immunized twice with KLH+PAMAM followed by a subcutaneous injection of KLH (20 ㎍/site) 7 weeks after the primary immunization exhibited a higher delayed-type hypersensitivity (DTH) reaction than those treated with KLH alone. In an in vitro analysis of T lymphocyte proliferation in response to KLH in week 8, the splenocytes of mice treated with KLH+PAMAM showed significantly higher proliferating activity than those treated with KLH alone, and the culture supernatants of cell cultures from mice immunized with added PAMAM dendrimer showed higher levels of KLH-specific cytokine (IL-4 and IFN-r) production. These results suggest that PAMAM dendrimer G4 possesses a potent immune-adjuvant activity for enhancing both humoral and cell-mediated immunity specific to foreign antigens.

Protective Efficacy of Recombinant Proteins Adenylate Kinase, Nucleoside Diphosphate Kinase, and Heat-Shock Protein 70 against Mycobacterium tuberculosis Infection in Mice (유전자 재조합 단백질 Adenylate Kinase, Nucleoside Diphosphate Kinase와 Heat-Shock Protein 70의 결핵균에 대한 방어면역효능 분석)

  • Lee, Seung-Heon;Lee, Eun-Gae;Kim, Su-Yeon;Cho, Sang-Nae;Park, Young-Kil;Bai, Gill-Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • Background : Priming and boosting vaccination strategy has been widely explored for new vaccine development against tuberculosis. As an effort to identify other vaccine candidates, this study was initiated to evaluate protective efficacy of adenylate kinase (AK), nucleoside diphosphate kinase (NdK), and heat shock protein 70 (Hsp70) of Mycobacterium tuberculosis. Method : M. tuberculosis genes encoding AK, NdK, and Hsp70 proteins were amplified by PCR and cloned into E. coli expression vector, pQE30. Recombinant AK, NdK, and Hsp70 was purified through Ni-NTA resin. To evaluate immune responses, we performed enzyme-linked immunosorbent assay (ELISA) for IgG isotype and $IFN-{\gamma}$ after mice were immunized subcutaneously with recombinant proteins delivered in dimethyl dioctadecylammonium bromide (DDA). Immunized- and control groups were challenged by aerosol with M. tuberculosis. The spleens and lungs of mice were removed aseptically and cultured for CFU of M. tuberculosis. Result : Vaccination with recombinant proteins AK, NdK, and Hsp70 delivered in DDA elicited significant level of antibody and $IFN-{\gamma}$ responses to corresponding antigens but no protective immunity comparable to that achieved with Mycobacterium bovis BCG. Conclusion : Recombinant proteins AK, NdK, and Hsp70 do not effectively control growth of M. tuberculosis in mice when immunized with DDA as an adjuvant.

Innate immune responses of common carp, Cyprinus carpio L. against antiviral activity inducers (항바이러스 활성 유도 물질에 대한 잉어의 선천성 면역 반응)

  • Cho, Mi-Young;Kim, Su-Mi;Kim, Eun-Jeon;Shon, Sang-Gyu;Kim, Jin-Woo;Park, Soo-Il
    • Journal of fish pathology
    • /
    • v.20 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • To investigate the innate immune response involved in early stage of anti-viral defence, carps were injected with UV-inactivated spring viraemia of carp virus (SVCV), poly inosinic:cytidylic acid (Poly I:C) and concanavalin A (Con A), respectively and examined lysozyme activity, serum complement activity and chemiluminescent (CL) response of leucocytes isolated from head kidney at 3 days post-injection. There was no significant difference in plasma lysozyme activities among all experimental groups. However, lysozyme activities of head kidney in the groups injected with antiviral activity inducers were significantly higher than those of the control injected with physiological saline. Bactericidal activities of serum of the groups injected with antiviral activity inducers were not significantly different from control group. However, the CL responses were significantly higher at lower dose of Poly I:C and Con A, whilst dose-dependent increase was shown in UV-inactivated SVCV-injected group. In the challenge test with 1×104 TCID50/fish of SVCV at 4 days post-injection, UV-inactivated SVCV- and Poly I:C-injected groups showed higher relative percent survival (RPS) than Con A-injected group. Furthermore, strong protection was observed in the group injected higher dose of Poly I:C although showed lower activities in lysozyme and CL response. These results suggested that Poly I:C might stimulate other factors belonging to non-specific immune system have induced protective immunity against the SVCV challenged.