Protective Efficacy of Recombinant Proteins Adenylate Kinase, Nucleoside Diphosphate Kinase, and Heat-Shock Protein 70 against Mycobacterium tuberculosis Infection in Mice

유전자 재조합 단백질 Adenylate Kinase, Nucleoside Diphosphate Kinase와 Heat-Shock Protein 70의 결핵균에 대한 방어면역효능 분석

  • Lee, Seung-Heon (Department of Molecular Biology, Korean Institute of Tuberculosis) ;
  • Lee, Eun-Gae (Department of Microbiology, Yonsei University College of Medicine) ;
  • Kim, Su-Yeon (Department of Microbiology, Yonsei University College of Medicine) ;
  • Cho, Sang-Nae (Department of Microbiology, Yonsei University College of Medicine) ;
  • Park, Young-Kil (Department of Molecular Biology, Korean Institute of Tuberculosis) ;
  • Bai, Gill-Han (Department of Molecular Biology, Korean Institute of Tuberculosis)
  • 이승헌 (대한결핵협회 결핵연구원) ;
  • 이은계 (연세대학교 의과대학 미생물학교실) ;
  • 김수연 (연세대학교 의과대학 미생물학교실) ;
  • 조상래 (연세대학교 의과대학 미생물학교실) ;
  • 박영길 (대한결핵협회 결핵연구원) ;
  • 배길한 (대한결핵협회 결핵연구원)
  • Received : 2004.12.20
  • Accepted : 2005.01.18
  • Published : 2005.02.28

Abstract

Background : Priming and boosting vaccination strategy has been widely explored for new vaccine development against tuberculosis. As an effort to identify other vaccine candidates, this study was initiated to evaluate protective efficacy of adenylate kinase (AK), nucleoside diphosphate kinase (NdK), and heat shock protein 70 (Hsp70) of Mycobacterium tuberculosis. Method : M. tuberculosis genes encoding AK, NdK, and Hsp70 proteins were amplified by PCR and cloned into E. coli expression vector, pQE30. Recombinant AK, NdK, and Hsp70 was purified through Ni-NTA resin. To evaluate immune responses, we performed enzyme-linked immunosorbent assay (ELISA) for IgG isotype and $IFN-{\gamma}$ after mice were immunized subcutaneously with recombinant proteins delivered in dimethyl dioctadecylammonium bromide (DDA). Immunized- and control groups were challenged by aerosol with M. tuberculosis. The spleens and lungs of mice were removed aseptically and cultured for CFU of M. tuberculosis. Result : Vaccination with recombinant proteins AK, NdK, and Hsp70 delivered in DDA elicited significant level of antibody and $IFN-{\gamma}$ responses to corresponding antigens but no protective immunity comparable to that achieved with Mycobacterium bovis BCG. Conclusion : Recombinant proteins AK, NdK, and Hsp70 do not effectively control growth of M. tuberculosis in mice when immunized with DDA as an adjuvant.

배 경 : 최근 결핵에 대한 새로운 백신 개발은 초회 면역 방법 및 추가 면역 방법을 이용하는 방향으로 연구되고 있다. 본 실험은 새로운 백신 후보 물질로서의 가능성을 알아보기 위하여 결핵균 adenylate kinase (AK), nucleoside diphosphate (NdK) 및 heat shock protein 70(Hsp70)의 결핵균에 대한 방어면역효능을 측정하였다. 방 법 : 재조합 단백질들을 정제하기 위하여 중합효소 연쇄반응으로 증폭한 결핵균 유전자 단편들을 E.coli expression vector, pQE30에 클로닝한 후, Ni-NTA resin을 이용하여 정제하였다. DDA와 재조합 단백질들을 마우스에 면역주사하고 면역반응 생성 유무를 확인하기 위하여 항체와 $IFN-{\gamma}$ 생성능을 측정하였다. 면역주사 한 마우스에 결핵균을 공기 감염시킨 후, 폐와 비장을 분리하여 결핵균 생균수 실험을 하였다. 결 과 : 재조합 단백질 AK, NdK 와 Hsp70을 면역보강제인 DDA를 이용하여 면역주사 한 결과에서, 생리식염수 혹은 DDA를 면역주사 한 마우스에 비교하여 재조합 단백질을 면역주사 한 마우스에서는 각 항원에 대해 항체와 $IFN-{\gamma}$ 생성능이 높게 나타났으나 결핵균에 대한 효과적인 방어면역효능은 나타나지 않았다. 결 론 : 마우스를 모델로 한 결핵균에 대한 방어면역효능 실험에서, 면역보강제 DDA를 이용한 재조합 단백질 AK, NdK 및 Hsp70을 면역주사 한 경우에는 결핵균의 성장을 효과적으로 조절하지 못하였다. 혼합 단백질 혹은 다른 T세포 면역보강제의 사용에 의한 추시가 필요하다.

Keywords

References

  1. Olsen AW, Andersen P. A novel TB vaccine: strategies to combat a complex pathogen. Immunol Lett 2003; 85:207-11 https://doi.org/10.1016/S0165-2478(02)00232-8
  2. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995;346: 1339-45 https://doi.org/10.1016/S0140-6736(95)92348-9
  3. Agger EM, Anderson P. A novel TB vaccine; towards a strategy based on our understanding of BCG failure. Vaccine 2002;21:7-14 https://doi.org/10.1016/S0264-410X(02)00447-4
  4. Markaryan A, Zaborina O, Punj V, Chakrabarty AM. Adenylate kinase as a virulence factor of Pseudomonas aeruginosa. J Bacteriol 2001;183:3345-52 https://doi.org/10.1128/JB.183.11.3345-3352.2001
  5. Munier-Lehmann H, Burlacu-Miron S, Craescu CT, Mantsch HH, Schultz CP. A new subfamily of short bacterial adenylate kinase with the Mycobacterium tuberculosis enzyme as a model: a predictive and experimental study. Proteins 1999;36:238-48 https://doi.org/10.1002/(SICI)1097-0134(19990801)36:2<238::AID-PROT9>3.0.CO;2-K
  6. Chakrabarty AM. Nucleoside diphosphate kinase: role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol Microbiol 1998;28: 875-82 https://doi.org/10.1046/j.1365-2958.1998.00846.x
  7. Chen Y, Morera S, Mocan J, Lascu I, Janin J. Xray structure of Mycobacterium tuberculosis nucleoside diphosphate kinase. Proteins 2002;47:556-7 https://doi.org/10.1002/prot.10113
  8. Chopra P, Singh A, Koul A, Ramachandran S, Drlica K, Tyagi AK, Singh Y. Cytotoxic activity of nucleoside diphosphate kinase secreted from Myco. bacterium tuberculosis. Eur J Biochem 2003;270: 625-34 https://doi.org/10.1046/j.1432-1033.2003.03402.x
  9. Britton WJ, Hellqvist L, Basten A, Raison RL. Mycobacterium leprae antigens involved in human responses: identification of four antigens by mono. clonal antibodies. J Immunol 1985;135:4171-7
  10. Engers HD, Houba V, Bennedsen J, Buchanan TM, Chaparas SD, Kadival G, et al. Results of a World Health Organization-sponsored workshop to characterise antigens recognised by mycobacterium-specific mo- noclonal antibodies. Infect Immun 1986;51:718-20
  11. Britton WJ, Hellqvist L, Basten A, Inglis AS. Im. munoreactivity of a 70kD protein purified from Mycobacterium bovis bacillus Calmette-Guerin by monoclonal antibody affinity chromatography. J Exp Med 1986;164:695-708 https://doi.org/10.1084/jem.164.3.695
  12. Adams E, Garsia RJ, Hellqvist L, Holt P, Basten A. T cell reactivity to the purified mycobacterial antigens p65 and p70 in leprosy patients and their household contacts. Clin Exp Immunol 1990;80:206-12 https://doi.org/10.1111/j.1365-2249.1990.tb05235.x
  13. Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny- Arndt U, Raupach B, Mattow J, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 1999;33:1103-17 https://doi.org/10.1046/j.1365-2958.1999.01549.x
  14. Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun 2000;68:791-5 https://doi.org/10.1128/IAI.68.2.791-795.2000
  15. Rosenkrands I, Weldingh K, Jscobsen S, Hansen CV, Florio W, Gianetri I, et al. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microse. quencing and immunodetection. Electrophoresis 2000; 21:935-48 https://doi.org/10.1002/(SICI)1522-2683(20000301)21:5<935::AID-ELPS935>3.0.CO;2-P
  16. Rosenkrands I, King A, Weldingh K, Moniatte M, Moertz E, Adersen P. Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 2000;21: 3740-56 https://doi.org/10.1002/1522-2683(200011)21:17<3740::AID-ELPS3740>3.0.CO;2-3
  17. Covert BA, Spencer JS, Orme IM, Belisle JT. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics 2001;1:574-86 https://doi.org/10.1002/1615-9861(200104)1:4<574::AID-PROT574>3.0.CO;2-8
  18. Lindbland EB, Elhay MJ, Silva R, Appelberg R, Andersen P. Adjuvant modulation of immune res. ponses to tuberculosis subunit vaccines. Infect Immun 1997;65:623-9
  19. Adersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun 1994;62:2536-44
  20. Martin RM, Lew AM. Is IgG2a a good Th1 marker in mice? Immunol Today 1998;19:49
  21. Weinrich-Olsen A, van Pinxteren LA, Meng Okkels L, Birk Rasmussen P, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and east-6. Infect Immun 2001;69:2773-8 https://doi.org/10.1128/IAI.69.5.2773-2778.2001
  22. Stewart GR, Snewin VA, Walzl G, Hussell T, Tormay P, O'Gaora P, et al. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuber. culosis in the chronic phase of infection. Nat Med 2001;7:732-7 https://doi.org/10.1038/89113
  23. Colaco CA, Bailey CR, Keeble J, Walker KB. BCG (Bacille Calmette-Guerin) HcpCs(heat-shock proteinpeptide complexes) induce T-helper responses and protect against live challenge in a murine aerosol challenge model of pulmonary tuberculosis. Biochem Soc Trans 2004;32:626-8 https://doi.org/10.1042/BST0320626
  24. Hogarth PJ, Jahans KJ, Hecker R, Hewinson RG, Chanbers MA. Evaluation of adjuvants for protein vaccines against tuberculosis in guinea pig. Vaccine 2003;21:977-82 https://doi.org/10.1016/S0264-410X(02)00548-0
  25. Doherty TM, Olsen AW, van Pinxteren L, Andersen P. Oral vaccination with subunit vaccines protects animals against aerosol infection with Mycobacterium tuberculosis. Infect Immun 2002;70:3111-21 https://doi.org/10.1128/IAI.70.6.3111-3121.2002
  26. Silva RA, Pais TF, Appelberg R. Effects of inter. leukin-12 in the long-term protection conferred by a Mycobacterium avium subunit vaccine. Scand J Immunol 2000;52:531-3 https://doi.org/10.1046/j.1365-3083.2000.00816.x