• Title/Summary/Keyword: Immune network

Search Result 855, Processing Time 0.022 seconds

T Cell Immunoglobulin Mucin Domain (TIM)-3 Promoter Activity in a Human Mast Cell Line

  • Kim, Jung Sik;Shin, Dong-Chul;Woo, Min-Yeong;Kwon, Myung-Hee;Kim, Kyongmin;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.207-212
    • /
    • 2012
  • T cell immunoglobulin mucin domain (TIM)-3 is an immunomodulatory molecule and upregulated in T cells by several cytokines. TIM-3 also influences mast cell function but its transcriptional regulation in mast cells has not been clarified. Therefore, we examined the transcript level and the promoter activity of TIM-3 in mast cells. The TIM-3 transcript level was assessed by real-time RT-PCR and promoter activity by luciferase reporter assay. TIM-3 mRNA levels were increased in HMC-1, a human mast cell line by TGF-${\beta}1$ stimulation but not by stimulation with interferon (IFN)-${\alpha}$, IFN-${\lambda}$, TNF-${\alpha}$, or IL-10. TIM-3 promoter -349~+144 bp region relative to the transcription start site was crucial for the basal and TGF-${\beta}1$-induced TIM-3 promoter activities in HMC-1 cells. TIM-3 promoter activity was increased by over-expression of Smad2 and Smad4, downstream molecules of TGF-${\beta}1$ signaling. Our results localize TIM-3 promoter activity to the region spanning -349 to +144 bp in resting and TGF-${\beta}1$ stimulated mast cells.

Immunomodulatory Effects of Dioscoreae Rhizome Against Inflammation through Suppressed Production of Cytokines Via Inhibition of the NF-${\kappa}B$ Pathway

  • Kim, Seulah;Shin, Seulmee;Hyun, Bobae;Kong, Hyunseok;Han, Shinha;Lee, Aeri;Lee, Seungjeong;Kim, Kyungjae
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.181-188
    • /
    • 2012
  • Dioscoreae Rhizome (DR) has been used in traditional medicine to treat numerous diseases and is reported to have anti-diabetes and anti-tumor activities. To identify a bioactive traditional medicine with anti-inflammatory activity of a water extract of DR (EDR), we determined the mRNA and protein levels of proinflammatory cytokines in macrophages through RT-PCR and western blot analysis and performed a FACS analysis for measuring surface molecules. EDR dose-dependently decreased the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, and $PGE_2$, as well as mRNA levels of iNOS, COX-2, and pro-inflammatory cytokines, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 was also reduced by EDR. Furthermore, activation of the nuclear transcription factor, NF-${\kappa}B$, but not that of IL-4 and IL-10, in macrophages was inhibited by EDR. These results show that EDR decreased pro-inflammatory cytokines via inhibition of NF-${\kappa}B$-dependent inflammatory protein level, suggesting that EDR could be a useful immunomodulatory agent for treating immunological diseases.

Production of $TGF-{\beta}1$ as a Mechanism for Defective Antigen-presenting Cell Function of Macrophages Generated in vitro with M-CSF

  • Lee, Jae-Kwon;Lee, Young-Ran;Lee, Young-Hee;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Macrophages generated in vitro using macrophage-colony stimulating factor (M-CSF) and interleukin (IL)-6 from bone marrow cells (BM-Mp) are defective in antigen presenting cell (APC) function as shown by their ability to induce the proliferation of anti-CD3 mAb-primed syngeneic T cells. However, they do express major histocompatibility (MHC) class I and II molecules. accessory molecules and intracellular adhesion molecules. Here we demonstrate that the defective APC function of macrophages is mainly due to production of $TGF-{\beta}1$ by BM-Mp. Methods: Microarray analysis showed that $TGF-{\beta}1$ was highly expressed in BM-Mp, compared to a macrophage cell line, B6D. which exerted efficient APC function. Production of $TGF-{\beta}1$ by BM-Mp was confirmed by neutralization experiments of $TGF-{\beta}1$ as well as by real time-polymerase chain reaction (PCR). Results: Addition of $anti-TGF-{\beta}1$ monoclonal antibody to cultures of BM-Mp and anti-CD3 mAb-primed syngeneic T cells efficiently induced the proliferation of syngeneic T cells. Conversely, the APC function of B6D cells was almost completely suppressed by addition of $TGF-{\beta}1$. Quantitative real time-PCR analysis also confirmed the enhanced expression of $TGF-{\beta}1$ in BM-Mp. Conclusion: The defective APC function of macrophages generated in vitro with M-CSF and IL-6 was mainly due to the production of $TGF-{\beta}1$ by macrophages.

Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells

  • Yi, TacGhee;Lee, Hyun-Joo;Cho, Yun-Kyoung;Jeon, Myung-Shin;Song, Sun U.
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.54-65
    • /
    • 2014
  • Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.

Gut-residing Microbes Alter the Host Susceptibility to Autoantibody-mediated Arthritis

  • Lee, Hyerim;Jin, Bo-Eun;Jang, Eunkyeong;Lee, A Reum;Han, Dong Soo;Kim, Ho-Youn;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • K/BxN serum can transfer arthritis to normal mice owing to the abundant autoantibodies it contains, which trigger innate inflammatory cascades in joints. Little is known about whether gut-residing microbes affect host susceptibility to autoantibody-mediated arthritis. To address this, we fed C57BL/6 mice with water containing a mixture of antibiotics (ampicillin, vancomycin, neomycin, and metronidazol) for 2 weeks and then injected them with K/BxN serum. Antibiotic treatment significantly reduced the amount of bacterial genomic DNA isolated from fecal samples, in particular a gene encoding 16S ribosomal RNA derived from segmented filamentous bacteria. Arthritic signs, as indicated by the arthritic index and ankle thickness, were significantly attenuated in antibiotic-treated mice compared with untreated controls. Peyer's patches and mesenteric lymph nodes from antibiotic-treated mice contained fewer IL-17-expressing cells than those from untreated mice. Antibiotic treatment reduced serum C3 deposition in vitro via the alternative complement pathway. IL-$17^{-/-}$ congenic C57BL/6 mice were less susceptible to K/BxN serum-transferred arthritis than their wild-type littermates, but were still responsive to treatment with antibiotics. These results suggest that gut-residing microbes, including segmented filamentous bacteria, induce IL-17 production in GALT and complement activation via the alternative complement pathway, which cause the host to be more susceptible to autoantibody-mediated arthritis.

Bacteroides fragilis Toxin Induces IL-8 Secretion in HT29/C1 Cells through Disruption of E-cadherin Junctions

  • Hwang, Soonjae;Gwon, Sun-Yeong;Kim, Myung Sook;Lee, Seunghyung;Rhee, Ki-Jong
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.213-217
    • /
    • 2013
  • Enterotoxigenic Bacteroides fragilis (ETBF) is a human gut commensal bacteria that causes inflammatory diarrhea and colitis. ETBF also promotes colorectal tumorigenesis in the Min mouse model. The key virulence factor is a secreted metalloprotease called B. fragilis toxin (BFT). BFT induces E-cadherin cleavage, cell rounding, activation of the ${\beta}$-catenin pathway and secretion of IL-8 in colonic epithelial cells. However, the precise mechanism by which these processes occur and how these processes are interrelated is still unclear. E-cadherin form homophilic interactions which tethers adjacent cells. Loss of E-cadherin results in detachment of adjacent cells. Prior studies have suggested that BFT induces IL-8 expression by inducing E-cadherin cleavage; cells that do not express E-cadherin do not secrete IL-8 in response to BFT. In the current study, we found that HT29/C1cells treated with dilute trypsin solution induced E-cadherin degradation and IL-8 secretion, consistent with the hypothesis that E-cadherin cleavage causes IL-8 secretion. However, physical damage to the cell monolayer did not induce IL-8 secretion. We also show that EDTA-mediated disruption of E-cadherin interactions without E-cadherin degradation was sufficient to induce IL-8 secretion. Finally, we determined that HT29/C1 cells treated with LiCl (${\beta}$-catenin activator) induced IL-8 secretion in a dose-dependent and time-dependent manner. Taken together, our results suggest that BFT induced IL-8 secretion may occur by the following process: E-cadherin cleavage, disruption of cellular interactions, activation of the ${\beta}$-catenin pathway and IL-8 expression. However, we further propose that E-cadherin cleavage per se may not be required for BFT induced IL-8 secretion.

Metformin Down-regulates $TNF-{\alpha}$ Secretion via Suppression of Scavenger Receptors in Macrophages

  • Hyun, Bobae;Shin, Seulmee;Lee, Aeri;Lee, Sungwon;Song, Youngcheon;Ha, Nam-Joo;Cho, Kyung-Hea;Kim, Kyungjae
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • Obesity is consistently increasing in prevalence and can trigger insulin resistance and type 2 diabetes. Many lines of evidence have shown that macrophages play a major role in inflammation associated with obesity. This study was conducted to determine metformin, a widely prescribed drug for type 2 diabetes, would regulate inflammation through down-regulation of scavenger receptors in macrophages from obesity-induced type 2 diabetes. RAW 264.7 cells and peritoneal macrophages were stimulated with LPS to induce inflammation, and C57BL/6N mice were fed a high-fat diet to generate obesity-induced type 2 diabetes mice. Metformin reduced the production of NO, $PGE_2$ and pro-inflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) through down-regulation of $NF-{\kappa}B$ translocation in macrophages in a dose-dependent manner. On the other hand, the protein expressions of anti-inflammatory cytokines, IL-4 and IL-10, were enhanced or maintained by metformin. Also, metformin suppressed secretion of $TNF-{\alpha}$ and reduced the protein and mRNA expression of $TNF-{\alpha}$ in obese mice as well as in macrophages. The expression of scavenger receptors, CD36 and SR-A, were attenuated by metformin in macrophages and obese mice. These results suggest that metformin may attenuate inflammatory responses by suppressing the production of $TNF-{\alpha}$ and the expressions of scavenger receptors.

Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures

  • Kim, Eun-Hee;Won, Ji-Hee;Hwang, Inhwa;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.141-147
    • /
    • 2013
  • Hypoxia has been shown to promote inflammation, including the release of proinflammatory cytokines, but it is poorly investigated how hypoxia directly affects inflammasome signaling pathways. To explore whether hypoxic stress modulates inflammasome activity, we examined the effect of cobalt chloride ($CoCl_2$)-induced hypoxia on caspase-1 activation in primary mixed glial cultures of the neonatal mouse brain. Unexpectedly, hypoxia induced by oxygen-glucose deprivation or $CoCl_2$ treatment failed to activate caspase-1 in microglial BV-2 cells and primary mixed glial cultures. Of particular interest, $CoCl_2$-induced hypoxic condition considerably inhibited NLRP3-dependent caspase-1 activation in mixed glial cells, but not in bone marrow-derived macrophages. $CoCl_2$-mediated inhibition of NLRP3 inflammasome activity was also observed in the isolated brain microglial cells, but $CoCl_2$ did not affect poly dA:dT-triggered AIM2 inflammasome activity in mixed glial cells. Our results collectively demonstrate that $CoCl_2$-induced hypoxia may negatively regulate NLRP3 inflammasome signaling in brain glial cells, but its physiological significance remains to be determined.

Impaired Expression of MAPK Is Associated with the Downregulation of TNF-${\alpha}$, IL-6, and IL-10 in Mycobacterium abscessus Lung Disease

  • Sim, Yun-Su;Kim, Su-Young;Kim, Eun-Joo;Shin, Sung-Jae;Koh, Won-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Background: Healthy individuals who develop nontuberculous mycobacteria (NTM) lung disease are likely to have specific susceptibility factors which can lead to a NTM infection. The aim of the present study was to investigate the mechanism underlying innate immune responses, including the role of mitogen-activated protein kinase (MAPK), in Mycobacterium abscessus lung disease. Methods: Extracellular signal-regulated kinase (ERK1/2) and p38 MAPK expression in monocytes from peripheral blood mononuclear cells were measured by Western blot analysis after stimulation by Mycobacterium avium in five patients with M. abscessus lung disease and seven healthy controls. A M. avium-induced cytokine assay was performed after inhibition of ERK1/2 and p38 MAPK pathways. Results: Mycobacterium avium induced p38 and ERK1/2 expression in monocytes from healthy controls and subsequently upregulated tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-10 production. In monocytes from patients with M. abscessus lung disease, however, induction of p38 and ERK1/2 expression, and the production of TNF-${\alpha}$, IL-6, and IL-10 were significantly lower. Conclusion: Decreased activity of MAPK and cytokine secretion in monocytes from patients with M. abscessus lung disease may provide an explanation regarding host susceptibility to these uncommon infections.

Online Identification for Normal and Abnormal Status of Water Quality on Ocean USN (해양 USN 환경에서 수질환경의 온라인 정상·비정상 상태 구분)

  • Jeoung, Sin-Chul;Ceong, Hee-Taek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.905-915
    • /
    • 2012
  • This paper suggests the online method to identify normal and abnormal state of water quality on the ocean USN. To define normal of the ocean water quality, we utilize the negative selection algorithm of artificial immunity system which has self and nonself identification characteristics. To distinguish abnormal status, normal state set of the ocean water quality needs to be defined. For this purpose, we generate normal state set base on mutations of each data and mutation of the data as logical product. This mutated normal (or self) sets used to identify abnormal status of the water quality. We represent the experimental result about mutated self set with the Gaussian function. Through setting the method on the ocean sensor logger, we can monitor whether the ocean water quality is normal or abnormal state by online.