• Title/Summary/Keyword: Immune network

Search Result 774, Processing Time 0.039 seconds

Regulation of Intestinal Homeostasis by Innate Immune Cells

  • Kayama, Hisako;Nishimura, Junichi;Takeda, Kiyoshi
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.227-234
    • /
    • 2013
  • The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

Expression Profile of Neuro-Endocrine-Immune Network in Rats with Vascular Endothelial Dysfunction

  • Li, Lujin;Jia, Zhenghua;Xu, Ling;Wu, Yiling;Zheng, Qingshan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2014
  • This study was to determine the correlation between endothelial function and neuro-endocrine-immune (NEI) network through observing the changes of NEI network under the different endothelial dysfunction models. Three endothelial dysfunction models were established in male Wistar rats after exposure to homocysteine (Hcy), high fat diet (HFD) and Hcy+HFD. The results showed that there was endothelial dysfunction in all three models with varying degrees. However, the expression of NEI network was totally different. Interestingly, treatment with simvastatin was able to improve vascular endothelial function and restored the imbalance of the NEI network, observed in the Hcy+HFD group. The results indicated that NEI network may have a strong association with endothelial function, and this relationship can be used to distinguish different risk factors and evaluate drug effects.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

Design of Steering Controller of AGV using Cell Mediate Immune Algorithm (세포성 면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구)

  • Lee, Yeong-Jin;Lee, Jin-U;Lee, Gwon-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.827-836
    • /
    • 2001
  • The PID controller has been widely applied to the most control systems because of its simple structure and east designing. One of the important points to design the PID control system is to tune the approximate control parameters for the given target system. To find the PID parameters using Ziegler Nichols(ZN) method needs a lot of experience and experiments to ensure the optimal performance. In this paper, CMIA(Cell Mediated Immune Algorithm) controller is proposed to drive the autonomous guided vehicle (AGV) more effectively. The proposed controller is based on specific immune responses of the biological immune system which is the cell mediated immunity. To verify the performance of the proposed CMIA controller, some experiments for the control of steering and speed of that AGV are performed. The tracking error of the AGV is mainly investigated for this purpose. As a result, the capability of realization and reliableness are proved by comparing the response characteristics of the proposed CMIA controllers with those of the conventional PID and NNPID(Neural Network PID) controller.

  • PDF

On Designing a Robust Control System Using Immune Algorithm (면역 알고리즘을 이용한 강건한 제어 시스템 설계)

  • Seo, Jae-Yong;Won, Kyoung-Jae;Kim, Seong-Hyun;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.12-20
    • /
    • 1998
  • As an approach to develope a control system with high robustness in changing control environment conditions, this paper will propose a robust control system, using multilayer neural network and biological immune system. The proposed control system adjusts weights of the multilayer neural network(MNN) with the immune algorithm. This algorithm is made up of two major divisions, the innate immune algorithm as a first line of defence and the adaptive immune algorithm as a barrier of self-adjustment. Using the proposed control system based on immune algorithm, we will work out a design for the controller of a robot manipulator. And we will demonstrate the effectiveness of the control system of robot manipulator with computer simulations.

  • PDF

Adaptive Distributed Autonomous Robotic System based on Artificial Immune Network and Classifier System

  • Hwang, Chul-Min;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1286-1290
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

  • PDF

Artificial immune network-based cooperative beharior strategies in collective autonomous mobile rotos (인공면역계 기반의 자율이동로봇군의 협조행동전략 결정)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.102-109
    • /
    • 1998
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment.For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental codintion changes, a robot select an appropriate beharior stategy. And its behavior stategy is stimulated and suppressed by other robot using communiation. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idotopic network hypothesis. And it is used for decision making of optimal swarm stragegy.

  • PDF

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.

Auto-Tuning of Reference Model Based PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.246-254
    • /
    • 2002
  • In this paper auto-tuning scheme of PID controller based on the reference model has been studied for a Process control system by immune algorithm. Up to this time, many sophisticated tuning algorithms have been tried in order to improve the PID controller performance under such difficult conditions. Also, a number of approaches have been proposed to implement mixed control structures that combine a PID controller with fuzzy logic. However, in the actual plant, they are manually tuned through a trial and error procedure, and the derivative action is switched off. Therefore, it is difficult to tune. Since the immune system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (Parallel Distributed Processing) network to complete patterns against the environmental situation. Simulation results reveal that reference model basd tuning by immune network suggested in this paper is an effective approach to search for optimal or near optimal process control.

Autonomous Mobile Robot System based on a Fuzzy Artificial Immune System (퍼지 인공 면역망 시스템을 이용한 자율이동로봇 시스템)

  • Lee, Dong-Je;Choi, Young-Kui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.257-260
    • /
    • 2007
  • In this paper addresses the low-level behavior of fuzzy control and the high-level behavior selector for Autonomous Mobile Robots (AMRs) based on a Fuzzy Artificial Immune Network. The sensing information that comes from ultrasonic sensors is the antigen it, and stimulates antibodies. There are many possible combinations of actions between action-patterns and external situations. The question is how to handle the situations to decide the proper action. We propose a fuzzy artificial immune network to solve the above problem. and the computer simulation for an AMR action selector shows the usefulness of the proposed action selector.

  • PDF