• Title/Summary/Keyword: Immune cell infiltration

Search Result 144, Processing Time 0.025 seconds

Paeonol accelerates skin wound healing by regulating macrophage polarization and inflammation in diabetic rats

  • Zuyang Zhang;Tianhua Chen;Wei Liu;Jiepeng Xiong;Liangdong Jiang;Mingjiang Liu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.437-448
    • /
    • 2023
  • Diabetic ulcer is usually seen in people with uncontrolled blood sugar. Reportedly, many factors such as impaired glucose metabolism, and macrovascular and microvascular diseases caused angiogenesis disorders and delayed the healing of diabetic ulcers, thus affecting the body's metabolism, nutrition, and immune function. This study aimed to explore the effect of paeonol on skin wound healing in diabetic rats and the related mechanism. A rat model of diabetic ulcer was established. High glucose-treated mouse skin fibroblasts were co-cultured with M1 or M2-polarized macrophages treated with or without paeonol. H&E and Masson staining were used to reveal inflammatory cell infiltration and collagen deposition, respectively. Immunohistochemistry visualized the expression of Ki67, CD31, and vascular endothelial growth factor (VEGF). Western blot was used to detect interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, IL-10, CD31, VEGFA, and collagen I/III. The expression of iNOS and arginase 1 was revealed by immunofluorescence staining. Paeonol treatment augmented collagen deposition and the expression of Ki67, CD31, VEGF, and macrophage M2 polarization markers (IL-4 and IL-10) and reduced wound area, inflammatory cell infiltration, and macrophage M1 polarization markers (IL-1β and TNF-α) in the ulcerated area. In vitro, paeonol treatment promoted M2-polarization and repressed M1-polarization in macrophages, thereby improving the repair of cell damage induced by high glucose. Paeonol accelerates the healing of diabetic ulcers by promoting M2 macrophage polarization and inhibiting M1 macrophage polarization.

Role of Tumor-associated Macrophage in Tumor Microenvironment (암미세환경에서 종양관련대식세포의 역할)

  • Min, Do Sik
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.992-998
    • /
    • 2018
  • Cancer cells grow in an environment composed of various components that supports tumor growth. Major cell types in the tumor microenvironment are fibroblast, endothelial cells and immune cells. All of these cells communicate with cancer cells. Among infiltrating immune cells as an abundant component of solid tumors, macrophages are a major component of the tumor microenvironment and orchestrates various aspects of immunity. The complex balance between pro-tumoral and anti-tumoral effects of immune cell infiltration can create a chronic inflammatory microenvironment essential for tumor growth and progression. Macrophages express different functional programs in response to microenvironmental signals, defined as M1 and M2 polarization. Tumor-associated macrophages (TAM) secret many cytokines, chemokines and proteases, which also promote tumor angiogenesis, growth, metastasis and immunosuppression. TAM have multifaceted roles in the development of many tumor types. TAM also interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. TAM obtain various immunosuppressive functions to maintain the tumor microenvironment. TAM are characterized by their heterogeneity and plasticity, as they can be functionally reprogrammed to polarized phenotypes by exposure to cancer-related factors, stromal factors, infections, or even drug interventions. Because TAMs produce tumor-specific chemokines by the stimulation of stromal factors, chemokines might serve as biomarkers that reflect disease activity. The evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of TAM in tumors is considered a promising therapeutic strategy for anti-cancer treatment.

Comparison of Immuno-Suppressive Activities of Pinitol Isolated from Soybean (콩으로부터 추출한 Pinitol의 면역억제 활성 비교)

  • Park, Chul-Hong;Heo, Jin-Chul;Nam, Dong-Yun;Lee, Si-Rim;Nam, So-Hyun;Son, Min-Sik;Hwang, Young-Hyun;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.449-453
    • /
    • 2009
  • The experiment was conducted to validate anti-inflammatory effects of pinitol from bean. It was evaluated for some molecule targets by wound healing assay and RT-PCR. The results of wound healing assay was shown dose-dependent inhibition of cell migration in cancer cells and inhibited RNA expression of ICAM-1, CD 44, MMP-17, MMP-14 and ARF2. Immune suppression activity in a mouse provoked by DNFB observed that inflammatory reaction with pinitol were reduced ear swelling and inflammatory cells infiltration in mouse atopic models. The result confirmed that pinitol have the effect of dose-dependent immune suppression activity.

Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy

  • Cho, Jaewon;Tae, Nara;Ahn, Jae-Hee;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Dae Hee
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2022
  • Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.

Effects of Pre-conditioning dose on the Immune Kinetics and Cytokine Production in the Leukocytes Infiltrating GVHD Tissues after MHC-matched Transplantation

  • Choi, Jung-Hwa;Yoon, Hye-Won;Min, Chang-Ki;Choi, Eun-Young
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.68-78
    • /
    • 2011
  • Background: Graft-versus-host disease (GVHD) is a huddle for success of hematopoietic stem cell transplantation. In this study, effects of irradiation dose on immune kinetics of GVHD were investigated using B6 ${\rightarrow}$ BALB.B system, a mouse model for GVHD after MHC-matched allogeneic transplantation. Methods: BALB.B mice were transplanted with bone marrow and spleen cells from C57BL/6 mice after irradiation with different doses. Leukocytes residing in the peripheral blood and target organs were collected periodically from the GVHD hosts for analysis of chimerism formation and immune kinetics along the GVHD development via flow cytometry. Myeloid cells were tested for production of IL-17 via flow cytometry. Results: Pre-conditioning of BALB.B hosts with 900 cGy and 400 cGy resulted in different chimerism of leukocytes from the blood and affected survival of GVHD hosts. Profiles of leukocytes infiltrating GVHD target organs, rather than profiles of peripheral blood leukocytes (PBLs), were significantly influenced by irradiation dose. Proportions of IL-17 producing cells in the infiltrating $Gr-1^+$ or $Mac-1^+$ cells were higher in the GVHD hosts with high does irradiation than those with low dose irradiation. Conclusion: Pre-conditioning dose affected tissue infiltration of leukocytes and cytokine production by myeloid cells in the target organs.

Characterization of Proinflammatory Responses and Innate Signaling Activation in Macrophages Infected with Mycobacterium scrofulaceum

  • Kim, Ki-Hye;Kim, Tae-Sung;Lee, Joy G.;Park, Jeong-Kyu;Yang, Miso;Kim, Jin-Man;Jo, Eun-Kyeong;Yuk, Jae-Min
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.307-320
    • /
    • 2014
  • Mycobacterium scrofulaceum is an environmental and slow-growing atypical mycobacterium. Emerging evidence suggests that M. scrofulaceum infection is associated with cervical lymphadenitis in children and pulmonary or systemic infections in immunocompromised adults. However, the nature of host innate immune responses to M. scrofulaceum remains unclear. In this study, we examined the innate immune responses in murine bone marrow-derived macrophages (BMDMs) infected with different M. scrofulaceum strains including ATCC type strains and two clinically isolated strains (rough and smooth types). All three strains resulted in the production of proinflammatory cytokines in BMDMs mediated through toll-like receptor-2 and the adaptor MyD88. Activation of MAPKs (extracellular signal-regulated kinase 1/2, and p38, and c-Jun N-terminal kinase) and nuclear receptor (NF)-${\kappa}B$ together with intracellular reactive oxygen species generation were required for the expression of proinflammatory cytokines in BMDMs. In addition, the rough morphotypes of M. scrofulaceum clinical strains induced higher levels of proinflammatory cytokines, MAPK and NF-${\kappa}B$ activation, and ROS production than other strains. When mice were infected with different M. scrofulaceum strains, those infected with the rough strain showed the greatest hepatosplenomegaly, granulomatous lesions, and immune cell infiltration in the lungs. Notably, the bacterial load was higher in mice infected with rough colonies than in mice infected with ATCC or smooth strains. Collectively, these data indicate that rough M. scrofulaceum induces higher inflammatory responses and virulence than ATCC or smooth strains.

Lutein Modulates Th2 Immune Response in Ovalbumin-Induced Airway Inflammation (Ovalbumin으로 유도한 천식 생쥐모델에서 lutein의 Th2 면역반응 연구)

  • Song, Jun-Young;Lee, Chang-Min;Lee, Min-Ki
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.298-305
    • /
    • 2012
  • The general term flavonoids is often used to categorize a family of natural compounds that are highly abundant in all higher plants, and which in recent years have attracted scientific interest as therapeutics. Lutein is a xanthophyll and one of 600 known naturally occurring carotenoids. It is found in green vegetables such as spinach and kale, and has been demonstrated to exert anti-inflammatory activities. However, its anti-allergic effect in the Th1/Th2 immune response is poorly understood. In this study, we attempt to determine whether lutein regulates inflammatory mediators in an ovalbumin (OVA)-induced murine asthma model. To address this, mice were sensitized and challenged with OVA, and then treated with lutein before the last OVA challenge. Administration of lutein significantly suppressed the OVA-induced airway hyper-responsiveness. It also resulted in a significant alleviation of the infiltration of inflammatory cells into the bronchoalveolar lavage. Additionally, lutein attenuated the increased expression of Th2 responses in OVA-challenged mice. These results demonstrate that lutein is a potent inhibitor that reduces Th2 immune responses. Furthermore, they show that the immunopharmacological function is mediated by a pathway that involves and is regulated by Th2 immune response.

SAMD13 as a Novel Prognostic Biomarker and its Correlation with Infiltrating Immune Cells in Hepatocellular Carcinoma

  • Hye-Ran Kim;Choong Won Seo;Jae-Ho Lee;Sang Jun Han;Jongwan Kim
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.260-275
    • /
    • 2022
  • Sterile alpha motif (SAM) domains bind to various proteins, lipids, and RNAs. However, these domains have not yet been analyzed as prognostic biomarkers. In this study, SAM domain containing 13 (SAMD13), a member of the SAM domain, was evaluated to identify a novel prognostic biomarker in various human cancers, including hepatocellular carcinoma (HCC). Moreover, we identified a correlation between SAMD13 expression and immune cell infiltration in HCC. We performed bioinformatics analysis using online databases, such as Tumor Immune Estimation Resource, UALCAN, Kaplan-Meier plotter, LinkedOmics, and Gene Expression Profiling Interactive Analysis2. SAMD13 expression in HCC samples was significantly higher than that in normal liver tissue; additionally, SAMD13 was higher in primary tumors, various stages of cancer and grades of tumor, and status of nodal metastasis. Higher SAMD13 expression was also associated with poorer prognosis. SAMD13 expression positively correlated with CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells. In the analysis of SAMD13 co-expression networks, positively related genes of SAMD13 were associated with a high hazard ratio in different types of cancer, including HCC. In biological function of SAMD13, SAMD13 mainly include spliceosome, ribosome biogenesis in eukaryote, ribosome, etc. These results suggest that SAMD13 may serve as a novel prognostic biomarker for HCC diagnosis and provide novel insights into tumor immunology in HCC.

Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization

  • Ju Kim;Ye Lin Yang;Yongsu Jeong;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.41.1-41.16
    • /
    • 2022
  • The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be considered an adjuvant for vaccine development. In this study, we confirmed the possible adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced protective efficacy, with increased survival and reduced body weight loss after challenge infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective intranasal vaccine candidate molecule against MERS-CoV infection.

Effects of Concurrent Administration of JaUmJeSeupTangKaKam(JUJSTK) and Atopy Cream, Jawoongo(AJ) on Atopic Dermatitis-like Skin Lesions in NC/Nga Mouse (아토피양(樣)피부염 NC/Nga 생쥐에서 자음제습탕가감(滋陰除濕湯加減)과 아토피 크림-자운고(紫雲膏)의 병용투여가 피부염에 미치는 영향)

  • Lee, Nam-Yerl;Kim, Yun-Hee;Han, Jae-Kyung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.9-36
    • /
    • 2009
  • Objectives The purpose of this study is to examine the effect of a concurrent administration of JUJSTK and AJ on atopic dermatitis in an in-vivo experiment. Thus, this study is expressed by using NC/Nga atopic dermatitis mice which have histological and clinical similarities to that of humans have been used. Methods Clinical skin score, hematology, serum total IgE and IgG1 of the mouse was evaluated, and cytokine levels, total number of the cells, immunohistochemical staining, histological features of axillary lymph node(ALN), peripheral blood mononuclear cells(PBMCs), and a dorsal skin tissue of the mouse were analyzed. Results Oral administration of JUJSTK and concurrent administration of JUJSTK and AJ lowered the clinical skin score, total cell number of WBC, eosinophils in blood, and serum total of IgE & IgG1, IFN-$\gamma$, IL-5, IL-13, IL-17. In addition, total cell number of ALN and dorsal skin tissue, absolute cell number of $CD3e^+$ T cell, $CD4^+$ Th cell, $CD8^+$ c/sT cell, $CD3^+CCR3^+$ cell, $CCR3^+$ cell, $CD3^+CD69^+$, $CD4^+CXCR5^+$ in ALN, PBMCs, absolute cell number of $CCR3^+$, $CD3^+/CD69^+$, $CD11b^+/Gr-1^+$, $CD11b^+/Gr-1^+$ in dorsal skin tissue, Eotaxin2 mRNA, CCR3 mRNA in dorsal skin tissue and gene expression of IL-5 mRNA, IL-13 mRNA in ALN were significantly decreased. Furthermore, thickness of epidermis infiltrated inflammatory immune cell & mast cell in dermis, histological infiltration of mast cell, the size of inflammatory lymphocytes cells & plasma cells in ALN and histological infiltration of $CD4^+$ & $CCR3^+$ in ALN and dorsal skin tissue were significantly decreased as well. Conclusions Concurrent administration of JUJSTK and AJ on atopic dermatitis in an in-vivoexperiment by using an NC/Nga atopic dermatitis mouse was very effective as an atopic dermatitis treatment.

  • PDF