DOI QR코드

DOI QR Code

Characterization of Proinflammatory Responses and Innate Signaling Activation in Macrophages Infected with Mycobacterium scrofulaceum

  • Kim, Ki-Hye (Center of Inflammation, Infection & Immunity, Institute for Biomedical Sciences, Georgia State University) ;
  • Kim, Tae-Sung (Department of Microbiology, Chungnam National University School of Medicine) ;
  • Lee, Joy G. (Department of Microbiology, Chungnam National University School of Medicine) ;
  • Park, Jeong-Kyu (Department of Microbiology, Chungnam National University School of Medicine) ;
  • Yang, Miso (Department of Microbiology, Chungnam National University School of Medicine) ;
  • Kim, Jin-Man (Infection Signaling Network Research Center, Chungnam National University School of Medicine) ;
  • Jo, Eun-Kyeong (Department of Microbiology, Chungnam National University School of Medicine) ;
  • Yuk, Jae-Min (Department of Infection Biology, Chungnam National University School of Medicine)
  • Received : 2014.10.03
  • Accepted : 2014.11.20
  • Published : 2014.12.31

Abstract

Mycobacterium scrofulaceum is an environmental and slow-growing atypical mycobacterium. Emerging evidence suggests that M. scrofulaceum infection is associated with cervical lymphadenitis in children and pulmonary or systemic infections in immunocompromised adults. However, the nature of host innate immune responses to M. scrofulaceum remains unclear. In this study, we examined the innate immune responses in murine bone marrow-derived macrophages (BMDMs) infected with different M. scrofulaceum strains including ATCC type strains and two clinically isolated strains (rough and smooth types). All three strains resulted in the production of proinflammatory cytokines in BMDMs mediated through toll-like receptor-2 and the adaptor MyD88. Activation of MAPKs (extracellular signal-regulated kinase 1/2, and p38, and c-Jun N-terminal kinase) and nuclear receptor (NF)-${\kappa}B$ together with intracellular reactive oxygen species generation were required for the expression of proinflammatory cytokines in BMDMs. In addition, the rough morphotypes of M. scrofulaceum clinical strains induced higher levels of proinflammatory cytokines, MAPK and NF-${\kappa}B$ activation, and ROS production than other strains. When mice were infected with different M. scrofulaceum strains, those infected with the rough strain showed the greatest hepatosplenomegaly, granulomatous lesions, and immune cell infiltration in the lungs. Notably, the bacterial load was higher in mice infected with rough colonies than in mice infected with ATCC or smooth strains. Collectively, these data indicate that rough M. scrofulaceum induces higher inflammatory responses and virulence than ATCC or smooth strains.

Keywords

References

  1. Sanders, J. W., A. D. Walsh, R. L. Snider, and E. E. Sahn. 1995. Disseminated Mycobacterium scrofulaceum infection: a potentially treatable complication of AIDS. Clin. Infect. Dis. 20: 549. https://doi.org/10.1093/clinids/20.3.549
  2. Hsueh, P. R., T. R. Hsiue, J. J. Jarn, S. W. Ho, and W. C. Hsieh. 1996. Disseminated infection due to Mycobacterium scrofulaceum in an immunocompetent host. Clin. Infect. Dis. 22: 159-161. https://doi.org/10.1093/clinids/22.1.159
  3. Ryoo, S. W., S. Shin, M. S. Shim, Y. S. Park, W. J. Lew, S. N. Park, Y. K. Park, and S. Kang. 2008. Spread of non-tuberculous mycobacteria from 1993 to 2006 in Koreans. J. Clin. Lab Anal. 22: 415-420. https://doi.org/10.1002/jcla.20278
  4. Falkinham, J. O., III. 2003. Factors influencing the chlorine susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. Appl. Environ. Microbiol. 69: 5685-5689. https://doi.org/10.1128/AEM.69.9.5685-5689.2003
  5. Rosenzweig, D.Y. 1980. "Atypical" mycobacterioses. Clin. Chest Med. 1: 273-284.
  6. Verrall, A. J., M. G. Netea, B. Alisjahbana, P. C. Hill, and C. R. van. 2014. Early clearance of Mycobacterium tuberculosis: a new frontier in prevention. Immunology 141: 506-513. https://doi.org/10.1111/imm.12223
  7. Jo, E. K., C. S. Yang, C. H. Choi, and C. V. Harding. 2007. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 9: 1087-1098. https://doi.org/10.1111/j.1462-5822.2007.00914.x
  8. Shin, D. M., C. S. Yang, J. M. Yuk, J. Y. Lee, K. H. Kim, S. J. Shin, K. Takahara, S. J. Lee, and E. K. Jo. 2008. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell Microbiol. 10: 1608-1621. https://doi.org/10.1111/j.1462-5822.2008.01151.x
  9. Lee, H. M., D. M. Shin, D. K. Choi, Z. W. Lee, K. H. Kim, J. M. Yuk, C. D. Kim, J. H. Lee, and E. K. Jo. 2009. Innate immune responses to Mycobacterium ulcerans via toll-like receptors and dectin-1 in human keratinocytes. Cell Microbiol. 11: 678-692. https://doi.org/10.1111/j.1462-5822.2009.01285.x
  10. Torrado, E., and A. M. Cooper. 2013. Cytokines in the balance of protection and pathology during mycobacterial infections. Adv. Exp. Med. Biol. 783: 121-140. https://doi.org/10.1007/978-1-4614-6111-1_7
  11. Kawai, T., and S. Akira. 2006. TLR signaling. Cell Death. Differ. 13: 816-825. https://doi.org/10.1038/sj.cdd.4401850
  12. Basu, J., D. M. Shin, and E. K. Jo. 2012. Mycobacterial signaling through toll-like receptors. Front Cell Infect. Microbiol. 2: 145.
  13. Quigley, M., J. Martinez, X. Huang, and Y. Yang. 2009. A critical role for direct TLR2-MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection. Blood 113: 2256-2264. https://doi.org/10.1182/blood-2008-03-148809
  14. Schieber, M., and N. S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24: R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
  15. Yang, C. S., D. M. Shin, K. H. Kim, Z. W. Lee, C. H. Lee, S. G. Park, Y. S. Bae, and E. K. Jo. 2009. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J. Immunol. 182: 3696-3705. https://doi.org/10.4049/jimmunol.0802217
  16. Yuk, J. M., D. M. Shin, C. S. Yang, K. H. Kim, S. J. An, J. Rho, J. K. Park, and E. K. Jo. 2009. Role of apoptosis-regulating signal kinase 1 in innate immune responses by Mycobacterium bovis bacillus Calmette-Guerin. Immunol. Cell Biol. 87: 100-107.
  17. Shin, D. M., J. M. Yuk, H. M. Lee, S. H. Lee, J. W. Son, C. V. Harding, J. M. Kim, R. L. Modlin, and E. K. Jo. 2010. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol. 12: 1648-1665. https://doi.org/10.1111/j.1462-5822.2010.01497.x
  18. Howard, S. T., E. Rhoades, J. Recht, X. Pang, A. Alsup, R. Kolter, C. R. Lyons, and T. F. Byrd. 2006. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 152: 1581-1590. https://doi.org/10.1099/mic.0.28625-0
  19. Byrd, T. F., and C. R. Lyons. 1999. Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infect. Immun. 67: 4700-4707.
  20. Kim, T. S., Y. S. Kim, H. Yoo, Y. K. Park, and E. K. Jo. 2014. Mycobacterium massiliense induces inflammatory responses in macrophages through Toll-like receptor 2 and c-Jun N-terminal kinase. J. Clin. Immunol. 34: 212-223. https://doi.org/10.1007/s10875-013-9978-y
  21. Kawai, T., and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637-650. https://doi.org/10.1016/j.immuni.2011.05.006
  22. Oeckinghaus, A., and S. Ghosh. 2009. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1: a000034.
  23. Cruz-Knight, W., and L. Blake-Gumbs. 2013. Tuberculosis: an overview. Prim. Care 40: 743-756. https://doi.org/10.1016/j.pop.2013.06.003
  24. Huynh, K. K., S. A. Joshi, and E. J. Brown. 2011. A delicate dance: host response to mycobacteria. Curr. Opin. Immunol. 23: 464-472. https://doi.org/10.1016/j.coi.2011.06.002
  25. Marazzi, M. G., A. Chapgier, A. C. Defilippi, V. Pistoia, S. Mangini, C. Savioli, A. Dell'Acqua, J. Feinberg, E. Tortoli, and J. L. Casanova. 2010. Disseminated Mycobacterium scrofulaceum infection in a child with interferon-gamma receptor 1 deficiency. Int. J. Infect. Dis. 14: e167-e170.
  26. Haas, W. H., P. Kirschner, S. Ziesing, H. J. Bremer, and E. C. Bottger. 1993. Cervical lymphadenitis in a child caused by a previously unknown mycobacterium. J. Infect. Dis. 167: 237-240. https://doi.org/10.1093/infdis/167.1.237
  27. Tortoli, E., P. Kirschner, B. Springer, A. Bartoloni, C. Burrini, A. Mantella, M. Scagnelli, C. Scarparo, M. T. Simonetti, and E. C. Bottger. 1997. Cervical lymphadenitis due to an unusual mycobacterium. Eur. J. Clin. Microbiol. Infect. Dis. 16: 308-311. https://doi.org/10.1007/BF01695636
  28. Kamala, T., C. N. Paramasivan, D. Herbert, P. Venkatesan, and R. Prabhakar. 1994. Isolation and Identification of Environmental Mycobacteria in the Mycobacterium bovis BCG Trial Area of South India. Appl. Environ. Microbiol. 60: 2180-2183.
  29. Torvinen, E., S. Suomalainen, L. Paulin, and J. Kusnetsov. 2014. Mycobacteria in Finnish cooling tower waters. APMIS 122: 353-358. https://doi.org/10.1111/apm.12153
  30. Puthanakit, T., P. Oberdorfer, N. Ukarapol, N. Akarathum, S. Punjaisee, T. Sirisanthana, and V. Sirisanthana. 2006. Immune reconstitution syndrome from nontuberculous mycobacterial infection after initiation of antiretroviral therapy in children with HIV infection. Pediatr. Infect. Dis. J. 25: 645-648. https://doi.org/10.1097/01.inf.0000225786.00940.37
  31. Brandt, L., C. J. Feino, O. A. Weinreich, B. Chilima, P. Hirsch, R. Appelberg, and P. Andersen. 2002. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect. Immun. 70: 672-678. https://doi.org/10.1128/IAI.70.2.672-678.2002
  32. Flaherty, D. K., B. Vesosky, G. L. Beamer, P. Stromberg, and J. Turner. 2006. Exposure to Mycobacterium avium can modulate established immunity against Mycobacterium tuberculosis infection generated by Mycobacterium bovis BCG vaccination. J. Leukoc. Biol. 80: 1262-1271. https://doi.org/10.1189/jlb.0606407
  33. Barrow, W. W., and P. J. Brennan. 1982. Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J. Bacteriol. 150: 381-384.
  34. Recht, J., and R. Kolter. 2001. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J. Bacteriol. 183: 5718-5724. https://doi.org/10.1128/JB.183.19.5718-5724.2001
  35. Bernut, A., J. L. Herrmann, K. Kissa, J. F. Dubremetz, J. L. Gaillard, G. Lutfalla, and L. Kremer. 2014. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc. Natl. Acad. Sci. U. S. A. 111: E943-E952. https://doi.org/10.1073/pnas.1321390111
  36. Rhoades, E. R., A. S. Archambault, R. Greendyke, F. F. Hsu, C. Streeter, and T. F. Byrd. 2009. Mycobacterium abscessus Glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J. Immunol. 183: 1997-2007. https://doi.org/10.4049/jimmunol.0802181
  37. Jonsson, B., M. Ridell, and A. E. Wold. 2013. Phagocytosis and cytokine response to rough and smooth colony variants of Mycobacterium abscessus by human peripheral blood mononuclear cells. APMIS 121: 45-55. https://doi.org/10.1111/j.1600-0463.2012.02932.x
  38. Means, T. K., S. Wang, E. Lien, A. Yoshimura, D. T. Golenbock, and M. J. Fenton. 1999. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163: 3920-3927.
  39. Wang, T., W. P. Lafuse, and B. S. Zwilling. 2000. Regulation of toll-like receptor 2 expression by macrophages following Mycobacterium avium infection. J. Immunol. 165: 6308-6313. https://doi.org/10.4049/jimmunol.165.11.6308
  40. Vignal, C., Y. Guerardel, L. Kremer, M. Masson, D. Legrand, J. Mazurier, and E. Elass. 2003. Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism. J. Immunol. 171: 2014-2023. https://doi.org/10.4049/jimmunol.171.4.2014
  41. Kleinnijenhuis, J., M. Oosting, L. A. Joosten, M. G. Netea, and C. R. Van. 2011. Innate immune recognition of Mycobacterium tuberculosis. Clin. Dev. Immunol. 2011: 405310.
  42. Fremond, C. M., D. Togbe, E. Doz, S. Rose, V. Vasseur, I. Maillet, M. Jacobs, B. Ryffel, and V. F. Quesniaux. 2007. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179: 1178-1189. https://doi.org/10.4049/jimmunol.179.2.1178
  43. Yoshida, A., H. Inagawa, C. Kohchi, T. Nishizawa, and G. Soma. 2009. The role of toll-like receptor 2 in survival strategies of Mycobacterium tuberculosis in macrophage phagosomes. Anticancer Res. 29: 907-910.
  44. Koul, A., T. Herget, B. Klebl, and A. Ullrich. 2004. Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol. 2: 189-202. https://doi.org/10.1038/nrmicro840
  45. Schorey, J. S., and A. M. Cooper. 2003. Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cell Microbiol. 5: 133-142. https://doi.org/10.1046/j.1462-5822.2003.00263.x
  46. Jung, S. B., C. S. Yang, J. S. Lee, A. R. Shin, S. S. Jung, J. W. Son, C. V. Harding, H. J. Kim, J. K. Park, T. H. Paik, C. H. Song, and E. K. Jo. 2006. The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect. Immun. 74: 2686-2696. https://doi.org/10.1128/IAI.74.5.2686-2696.2006
  47. Sim, Y. S., S. Y. Kim, E. J. Kim, S. J. Shin, and W. J. Koh. 2012. Impaired Expression of MAPK Is Associated with the Downregulation of TNF-alpha, IL-6, and IL-10 in Mycobacterium abscessus Lung Disease. Tuberc. Respir. Dis. (Seoul.) 72: 275-283. https://doi.org/10.4046/trd.2012.72.3.275
  48. Launois, P., M. Niang, A. Dieye, J. L. Sarthou, F. Rivier, and J. Millan. 1992. Human phagocyte respiratory burst by Mycobacterium bovis BCG and M. leprae: functional activation by BCG is mediated by complement and its receptors on monocytes. Int. J. Lepr. Other Mycobact. Dis. 60: 225-233.
  49. Ferrari, C. K., P. C. Souto, E. L. Franca, and A. C. Honorio-Franca. 2011. Oxidative and nitrosative stress on phagocytes' function: from effective defense to immunity evasion mechanisms. Arch. Immunol. Ther. Exp. (Warsz.) 59: 441-448. https://doi.org/10.1007/s00005-011-0144-z
  50. Vazquez-Torres, A. and F. C. Fang. 2001. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9: 29-33. https://doi.org/10.1016/S0966-842X(00)01897-7
  51. Lim, Y. J., H. H. Choi, J. A. Choi, J. A. Jeong, S. N. Cho, J. H. Lee, J. B. Park, H. J. Kim, and C. H. Song. 2013. Mycobacterium kansasii-induced death of murine macrophages involves endoplasmic reticulum stress responses mediated by reactive oxygen species generation or calpain activation. Apoptosis 18: 150-159. https://doi.org/10.1007/s10495-012-0792-4
  52. Kim, J. J., H. M. Lee, D. M. Shin, W. Kim, J. M. Yuk, H. S. Jin, S. H. Lee, G. H. Cha, J. M. Kim, Z. W. Lee, S. J. Shin, H. Yoo, Y. K. Park, J. B. Park, J. Chung, T. Yoshimori, and E. K. Jo. 2012. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host. Microbe 11: 457-468. https://doi.org/10.1016/j.chom.2012.03.008
  53. Vilcheze, C., T. Hartman, B. Weinrick, and W. R. Jacobs, Jr. 2013. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 4: 1881.
  54. Romero, M. M., L. Balboa, J. I. Basile, B. Lopez, V. Ritacco, S. S. de la Barrera, M. C. Sasiain, L. Barrera, and M. Aleman. 2012. Clinical isolates of Mycobacterium tuberculosis differ in their ability to induce respiratory burst and apoptosis in neutrophils as a possible mechanism of immune escape. Clin. Dev. Immunol. 2012: 152546.
  55. Reddy, V. M., J. Luna-Herrera, and P. R. Gangadharam. 1996. Pathobiological significance of colony morphology in Mycobacterium avium complex. Microb. Pathog. 21: 97-109. https://doi.org/10.1006/mpat.1996.0046
  56. Sohn, H., H. J. Kim, J. M. Kim, K. O. Jung, W. J. Koh, and S. J. Shin. 2009. High virulent clinical isolates of Mycobacterium abscessus from patients with the upper lobe fibrocavitary form of pulmonary disease. Microb. Pathog. 47: 321-328. https://doi.org/10.1016/j.micpath.2009.09.010

Cited by

  1. Mycobacterium fortuituminduces A20 expression that impairs macrophage inflammatory responses vol.74, pp.3, 2016, https://doi.org/10.1093/femspd/ftw015
  2. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis vol.44, pp.3, 2014, https://doi.org/10.1142/s0192415x16500336
  3. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.6, 2014, https://doi.org/10.1142/s0192415x16500622
  4. The Role of Protein Arginine Methyltransferases in Inflammatory Responses vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/4028353
  5. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections vol.11, pp.1, 2014, https://doi.org/10.1371/journal.pone.0146585
  6. Chitosan promotes immune responses, ameliorates glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, but enhances lactate dehydrogenase levels in normal mice in vivo vol.11, pp.4, 2014, https://doi.org/10.3892/etm.2016.3057
  7. Syk and IRAK1 Contribute to Immunopharmacological Activities of Anthraquinone-2-carboxlic Acid vol.21, pp.6, 2014, https://doi.org/10.3390/molecules21060809
  8. Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities vol.24, pp.6, 2014, https://doi.org/10.4062/biomolther.2016.027
  9. Chitosan promotes immune responses, ameliorating total mature white blood cell numbers, but increases glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, and ameliorates lactate dehyd vol.16, pp.3, 2014, https://doi.org/10.3892/mmr.2017.6923