• Title/Summary/Keyword: Immune Tissues

Search Result 403, Processing Time 0.033 seconds

Heterogeneity of IL-22-producing Lymphoid Tissue Inducer-like Cells in Human and Mouse

  • Kim, Soochan;Han, Sinsuk;Kim, Mi-Yeon
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.115-119
    • /
    • 2010
  • Lymphoid tissue inducer (LTi) cells have been characterized in mouse as a key cell when secondary lymphoid tissues are organized during development and memory T cells are formed after birth. In addition to their involvement in adaptive immune responses, recent studies show that they contribute to innate immune responses by producing large amount of interleukin (IL)-22 against microbial attack. Here, we compare IL-22-producing LTi and LTi-like cells in human and mouse and discuss their heterogeneity in different tissues.

Immune Regulatory Function of Cancer-Associated Fibroblasts in Non-small Cell Lung Cancer

  • Hyewon Lee;Mina Hwang;Seonae Jang;Sang-Won Um
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.4
    • /
    • pp.304-318
    • /
    • 2023
  • Background: Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment and significantly contribute to immune evasion. We investigated the effects of CAFs on the immune function of CD4+ and CD8+ T cells in non-small cell lung cancer (NSCLC). Methods: We isolated CAFs and normal fibroblasts (NFs) from tumors and normal lung tissues of NSCLC patients, respectively. CAFs were co-cultured with activated T cells to evaluate their immune regulatory function. We investigated the effect of CAF conditioned medium (CAF-CM) on the cytotoxicity of T cells. CAFs were also co-cultured with activated peripheral blood mononuclear cells and further incubated with cyclooxygenase-2 (COX2) inhibitors to investigate the potential role of COX2 in immune evasion. Results: CAFs and NFs were isolated from the lung tissues (n=8) and lymph nodes (n=3) of NSCLC patients. Immune suppressive markers, such as COX2 and programmed death-ligand 1 (PD-L1), were increased in CAFs after co-culture with activated T cells. Interestingly, CAFs promoted the expression of programmed death-1 in CD4+ and CD8+ T cells, and strongly inhibited T cell proliferation in allogenic and autologous pairs of CAFs and T cells. CAF-CM decreased the cytotoxicity of T cells. COX2 inhibitors partially restored the proliferation of CD4+ and CD8+ T cells, and downregulated the expression of COX2, prostaglandin E synthase, prostaglandin E2, and PD-L1 in CAFs. Conclusion: CAFs promote immune evasion by suppressing the function of CD4+ and CD8+ T cells via their effects on COX2 and PD-L1 in NSCLC. The immunosuppressive function of CAFs could be alleviated by COX2 inhibitors.

Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases

  • Seyoung Jung;Jeong Seok Lee
    • Molecules and Cells
    • /
    • v.46 no.2
    • /
    • pp.120-129
    • /
    • 2023
  • Recent technical advances have enabled unbiased transcriptomic and epigenetic analysis of each cell, known as "single-cell analysis". Single-cell analysis has a variety of technical approaches to investigate the state of each cell, including mRNA levels (transcriptome), the immune repertoire (immune repertoire analysis), cell surface proteins (surface proteome analysis), chromatin accessibility (epigenome), and accordance with genome variants (eQTLs; expression quantitative trait loci). As an effective tool for investigating robust immune responses in coronavirus disease 2019 (COVID-19), many researchers performed single-cell analysis to capture the diverse, unbiased immune cell activation and differentiation. Despite challenges elucidating the complicated immune microenvironments of chronic inflammatory diseases using existing experimental methods, it is now possible to capture the simultaneous immune features of different cell types across inflamed tissues using various single-cell tools. In this review, we introduce patient-based and experimental mouse model research utilizing single-cell analyses in the field of chronic inflammatory diseases, as well as multi-organ atlas targeting immune cells.

구강내 면역계에 대한 기본 고찰

  • Kim, Seong-Min
    • The Journal of the Korean dental association
    • /
    • v.40 no.8 s.399
    • /
    • pp.620-627
    • /
    • 2002
  • Oral health depends on the intergrity of the oral mucosa for prevention of the penetration of microbes and macromolecules that might be infectious, allergenic or antigenic. The intraoral immune systems include the tonsils, adenoids and nasopharyngeal-associated lymphoreticular tissue, or NALT. Mucosal inductive sites of the gastrointestinal tract(Peyer's patches and the appendix) and solitary lymph nodes collectively compose the gut-associated lymphoreticualr tissue, or GALT system. Both NALT and GALT are inductive regions where foreign antigens derived from viruses, bacteria, yeast and other molecules are encountered. The integration of tissues in NALT and GALT as part of the mucosal immune system, is very important to keep the oral immune system.

  • PDF

Development of A New Herbal Composition HemoHIM as An Immune-Improving Agent Using Irradiated Animal Models (방사선조사 동물모델 이용 면역기능개선-생약복합물 헤모힘(HemoHIM)개발)

  • Jo, Seong-Gi
    • Radioisotope journal
    • /
    • v.21 no.4
    • /
    • pp.38-45
    • /
    • 2006
  • A new herbal composition. HemoHIM, was developed using irradiated animal models and was successfully applied as an immune-improving agent. In a view that the protection and recovery of immune, hematopoietic and self-renewal tissues are essential for radioprotective agents, HemoHIM was developed based on a novel combination of three edible herbs (Angelica Radix, Cnidii Rhizoma. Paeonin Radix) that meet all those requirements. HemoHIM significantly protected the immune and hematopoietic system and enhanced their recovery in y-irradiated mice. For the application of HemoHIM as a health functional food and a supplementary agent for the cancer patients, the efficacy of HemoHIM to improve the immune functions was further evaluated in immune-depressed animals and humans. Animal studies demonstrated that HemoHIM significantly improved the immune functions in cyclophosphamide-treated mice, aged mice, and dexamethasone-treated mice. In human studies, HemoHIM enhanced the immune activity and cytokine secretion in sub-healthy volunteers, and alleviated the severe leukocyre depression in cancer patients during radiation and chemotherapy. Based on these results, HemoHIM was approved by Korea FDA as a material of health functional food for immune function improvement and will be commercially available soon. This case of HemoHIM research and development suggested that irradiated animals can be good models for biological degenerations such as immune depression, self-renewal tissue damage, and aging for the development of biological modulators.

  • PDF

The Interaction of Adipose Tissue with Immune System and Related Inflammatory Molecules (지방조직과 면역체계의 상호작용 및 관련 염증물질에 관한 고찰)

  • Kim, Yu-Hee;Choi, Bong-Hyuk;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.169-178
    • /
    • 2006
  • Background: Adipose tissues were initially introduced as energy storages, but recently they have become famous as an endocrine organ which produces and secretes various kinds of molecules to make physiologic and metabolic changes in human body. It has been studied that these molecules are secreted in abundance as the adipose tissue becomes bigger along with obesity. Furthermore, it has been found that they are mediating systemic inflammation and generation of metabolic diseases such as type 2 diabetes and atherosclerosis. On the basis of these, we studied previous papers which have been researched about the interaction between preadipocytes and macrophages, adipose tissues and lymph nodes, and adipose tissue secreting molecules. Results: Firstly, preadipocytes and macrophages are expressing similar transcriptomes and proteins, and preadipocytes can be converted to mature macrophages which have phagocytic activity. Moreover, the monocytes, which initially located in the bone marrow, are filtrated to the adipose tissue by monocyte chemotatic protein-1 and are matured to macrophages by colony stimulating factor-1. Secondly, adipose tissues and their associated lymph nodes are interacting each other in terms of energy efficiency. Lymph nodes promote lipolysis in adipose tissues, and polyunsaturated fatty acids in adipocytes become energy sources for dendritic cells. Lastly, adipose tissues produce and secrete proinflammatory molecules such as leptin, adiponectin, TNF-${\alpha}$, IL-6, and acute phase proteins, which induce the inflammation and potentially generate metabolic diseases. Conclusion: According to these, we can link adipose tissues to inflammation, but we need to affirm the actual levels and roles of adipose tissue-derived proinflammatory molecules in human body.

Screening of Potential Stress-Responsive and Immune-Related Genes by Expressed Sequence Tags in Mud Loach (Misgurnus mizolepis)

  • Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of fish pathology
    • /
    • v.15 no.2
    • /
    • pp.83-92
    • /
    • 2002
  • EST analysis was performed to identify stress-responsive and immune-related genes from mud loach (Misgurnus mizolepis), cDNA libraries were constructed with liver, intestine and kidney tissues and randomly chosen clones (216 for liver, 198 for intestine and 224 for kidney) were subjected to automated sequence analysis. Of 638 clones sequenced in totlal, approximalely 25% of ESTs was novel sequences (no match to GenBank) or sequences with high homology to hypothrtical/unknown genes. Several potential stress-responsive biomarker and/or immure-related genes were identified in all the tissues examined. It included lectin, MHC class I/II proteins, proteinase inhibitors, superoxide dismulase, catalase, glutathionc-S. transferase, heat-shock protein, warm temperature acclimation protein, complements, methylrransferasc, zinc finger proteins, macrophage maturation associated protein, and others. This information will offer new possibilities as fundamental baseline data for the molecular genetics and breeding of this species with an emphasis on the development of stress. (and disease)-resistsnt fish.

Genomic Organization and Isoform-Dependent Expression Patterns of Wap65 genes in Various Tissues during Immune Challenges in the Mud Loach Misgurnus mizolepis

  • Kim, Yi Kyung;Cho, Young Sun;Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.471-478
    • /
    • 2014
  • Genomic organization, including the structural characteristics of 5'-flanking regions of two 65-kDa protein (WAP65) isoform genes associated with warm temperature acclimation, were characterized and their transcriptional responses to immune challenges were examined in the intestine, kidney and spleen of the mud loach (Misgurnus mizolepis; Cypriniformes). Both mud loach Wap65 isoform genes displayed a 10-exon structure that is common to most teleostean Wap65 genes. The two mud loach Wap65 isoforms were predicted to possess various stress- and immune-related transcription factor binding sites in their regulatory regions; however, the predicted motif profiles differed between the two isoforms, and the inflammation-related transcription factor binding motifs, such as NF-${\kappa}B$ and CREBP sites, were more highlighted in the Wap65-2 isoform than the Wap65-1 isoform. The results of qRT-PCR indicated that experimental immune challenges using Edwardsiella tarda, lipopolysaccharide or polyI:C induced the Wap65-2 isoform more than Wap65-1 isoform, although modulation patterns in response to these challenges were tissue- and stimulant-dependent. This study confirms that functional diversification between the two mud loach Wap65 isoforms (i.e., closer involvement of Wap65-2 in the acute phase of inflammation and innate immunity) occurs at the mRNA level in multiple tissues, and suggests that such differential modulation patterns between the two isoforms are related to the different transcription factor binding profiles in their regulatory regions.

Integrative understanding of immune-metabolic interaction

  • Im, Seonyoung;Kim, Hawon;Jeong, Myunghyun;Yang, Hyeon;Hong, Jun Young
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.259-266
    • /
    • 2022
  • Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.

Vemurafenib Enhances NK cell Expansion and Tumor-killing Activity for Cancer Immunotherapy

  • Min Hwa Shin
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.371-375
    • /
    • 2023
  • Natural killer (NK) cells are innate immune cells and play important roles as the first immune cells to recognize and kill cancer. In patients with advanced and terminal cancer, NK cells are often inactivated, suggesting that NK cells may play important roles in cancer treatment. In particular, the proportion of NK cells among immune cells infiltrating tumor tissues is often low, which suggests that NK cells do not survive in tumor microenvironment (TME). In order to overcome these hurdles of NK cells in cancer treatment, it is critical to develop strategies that enhance the proliferation and cytolytic activity of NK cells. We applied Vemurafenib to NK cells and measured the degree of NK cell proliferation and functional activation. We obtained unexpected results of increased NK cell numbers and anti-tumor activity after Vemurafenib treatment. Although further investigation is required to uncover the detailed mechanisms, our results suggest that Vemurafenib is a promising candidate to increase the efficacy of cancer immunotherapy using NK cells.