• 제목/요약/키워드: Immune Function

검색결과 1,163건 처리시간 0.028초

Effects of Korean Red Ginseng (Panax ginseng), urushiol (Rhus vernicifera Stokes), and probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus acidophilus R0052) on the gut-liver axis of alcoholic liver disease

  • Bang, Chang Seok;Hong, So Hyung;Suk, Ki Tae;Kim, Jin Bong;Han, Sang Hak;Sung, Hotaik;Kim, Eun Ji;Kim, Myoung Jo;Kim, Moon Young;Baik, Soon Koo;Kim, Dong Joon
    • Journal of Ginseng Research
    • /
    • 제38권3호
    • /
    • pp.167-172
    • /
    • 2014
  • Background: Roles of immune reaction and toll-like receptor-4 (TLR-4) have widely been established in the pathogenesis of alcoholic liver disease (ALD). Methods: We evaluated the biologic efficacy of Korean Red Ginseng (KRG), urushiol, and probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus acidophilus R0052) in mouse models of ALD. Sixty C57BL/6 mice were equally divided into six feeding groups for 10 weeks: normal diet, alcohol, control, alcohol + KRG, alcohol + urushiol, and alcohol + probiotics. Alcohol was administered via a LiebereDeCarli liquid diet containing 10% alcohol. TLR-4 expression, proinflammatory cytokines, and histology, as well as the results of liver function tests were evaluated and compared. Results: No between-group differences were observed with regard to liver function. TLR-4 levels were significantly lower in the KRG, urushiol, and probiotics groups than in the alcohol group ($0.37{\pm}0.06ng/mL$, $0.39{\pm}0.12ng/mL$, and $0.33{\pm}0.07ng/mL$, respectively, vs. $0.88{\pm}0.31ng/mL$; p < 0.05). Interleukin-$1{\beta}$ levels in liver tissues were decreased among the probiotics and KRG groups. The tumor necrosis factor-${\alpha}$ level of liver tissue was decreased in the KRG group. Conclusion: The pathological findings showed that alcohol-induced steatosis was significantly reduced by KRG and urushiol. As these agents improve immunologic capacity, they may be considered in potential anti-ALD treatments.

인체(人體)의 일주리듬에 따른 변화(變化)와 건강법(健康法)에 관한 연구(硏究) (Study on maintaining healthy body and changes of human body by circadian rhythm)

  • 정상지;강정수
    • 혜화의학회지
    • /
    • 제12권1호
    • /
    • pp.103-121
    • /
    • 2003
  • Human being can't live without nature, then the changes of nature affect human body. It means that human body has corresponding changes to the KI(vital energy) of nature. There is a stream of changes in human body which circulate mysteriously and punctually by the laws of nature. If this stream of changes fits into human's life style, it would be most effective. It has a certain mode continuously. So if a person has a habit fitting into it, he will get the healthiest body. Then the researcher tries to explain the changes in human body by the time, mainly focused on within 24 hours. it is showing not only the oriental view, but also the western's. The researcher can find the coincidence as followings. At In-Si(3-5 am), the body function and the body temperature get to the bottom, therefore it's good for him to wake up and to run the vital energy. At Sa-Si(9-11 am), the patience on pain anxiety and the psychic concentration get to the top, he'd better start the work. At O-Si(11am-1pm), the heart energy has a vital move, then the blood concentration of Hb(hemoglobin) gets to the top. At Mi-Si(1-3 pm), the muscle strength, the squeeze, and the breathing rate increase. The reflex nerve sensitivity gets to the top. Creativity, observation, and working efficiency go high, so it's time to work hard. At Hae-Si(9pm-1am), the body function falls, sleeping is needed. At Chuck-Si(1-3 am), the cell spontaneity gets to the top, immune lymphocyte moves actively, and the blood concentration of growth hormone gets to the top. These are liver's work. In west, there has been active studies on how to reduce the side effect by using a person's bio-rhythm based on the 'time treatment', and how to reorganize the bio-rhythm by using the machine and the age resistance based on the 'bio-watch'. Though the 'time treatment' means something, the artificial resistance on bio-rhythm seems to give bad effects to human body. If a person lives by regimen of oriental medicine, he will maintain the healthiest body. Regimen is that human body follows the laws of nature, and moves its mysterious, Punctual and periodical changes.

  • PDF

NQO1-Knockout Mice Are Highly Sensitive to Clostridium Difficile Toxin A-Induced Enteritis

  • Nam, Seung Taek;Hwang, Jung Hwan;Kim, Dae Hong;Lu, Li Fang;Hong, Ji;Zhang, Peng;Yoon, I Na;Hwang, Jae Sam;Chung, Hyo Kyun;Shong, Minho;Lee, Chul-Ho;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1446-1451
    • /
    • 2016
  • Clostridium difficile toxin A causes acute gut inflammation in animals and humans. It is known to downregulate the tight junctions between colonic epithelial cells, allowing luminal contents to access body tissues and trigger acute immune responses. However, it is not yet known whether this loss of the barrier function is a critical factor in the progression of toxin A-induced pseudomembranous colitis. We previously showed that NADH:quinone oxidoreductase 1 (NQO1) KO (knockout) mice spontaneously display weak gut inflammation and a marked loss of colonic epithelial tight junctions. Moreover, NQO1 KO mice exhibited highly increased inflammatory responses compared with NQO1 WT (wild-type) control mice when subjected to DSS-induced experimental colitis. Here, we tested whether toxin A could also trigger more severe inflammatory responses in NQO1 KO mice compared with NQO1 WT mice. Indeed, our results show that C. difficile toxin A-mediated enteritis is significantly enhanced in NQO1 KO mice compared with NQO1 WT mice. The levels of fluid secretion, villus disruption, and epithelial cell apoptosis were also higher in toxin A-treated NQO1 KO mice compared with WT mice. The previous and present results collectively show that NQO1 is involved in the formation of tight junctions in the small intestine, and that defects in NQO1 enhance C. difficile toxin A-induced acute inflammatory responses, presumably via the loss of epithelial cell tight junctions.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권10호
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Effect of Xenogeneic Substances on the Glycan Profiles and Electrophysiological Properties of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

  • Yong Guk, Kim;Jun Ho Yun;Ji Won Park;Dabin Seong;Su-hae Lee;Ki Dae Park;Hyang-Ae Lee;Misun Park
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.281-292
    • /
    • 2023
  • Background and Objectives: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold great promise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy. Methods and Results: We successfully generated hiPSC-CM in the presence and absence of xenogeneic substances (xeno-containing (XC) and xeno-free (XF) conditions, respectively), and compared their characteristics, including the contractile functions and glycan profiles. Compared to XC-hiPSC-CM, XF-hiPSC-CM showed early onset of myocyte contractile beating and maturation, with a high expression of cardiac lineage-specific genes (ACTC1, TNNT2, and RYR2) by using MEA and RT-qPCR. We quantified N-glycolylneuraminic acid (Neu5Gc), a xenogeneic sialic acid, in hiPSC-CM using an indirect enzyme-linked immunosorbent assay and liquid chromatography-multiple reaction monitoring-mass spectrometry. Neu5Gc was incorporated into the glycans of hiPSC-CM during xeno-containing differentiation, whereas it was barely detected in XF-hiPSC-CM. Conclusions: To the best of our knowledge, this is the first study to show that the electrophysiological function and glycan profiles of hiPSC-CM can be affected by the presence of xenogeneic substances during their differentiation and maturation. To ensure quality control and safety in hiPSC-based cell therapy, xenogeneic substances should be excluded from the biomanufacturing process.

Comparing Gut Microbial Composition and Functional Adaptations between SPF and Non-SPF Pigs

  • Haesun Lee;Woncheoul Park;Jingu No;Nam Woong Hyung;Ju-Yeong Lee;Seokho Kim;Hyeon Yang;Poongyeon Lee;Eunju Kim;Keon Bong Oh;Jae Gyu Yoo;Seunghoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1484-1490
    • /
    • 2024
  • The gut microbiota is a key factor significantly impacting host health by influencing metabolism and immune function. Its composition can be altered by genetic factors, as well as environmental factors such as the host's surroundings, diet, and antibiotic usage. This study aims to examine how the characteristics of the gut microbiota in pigs, used as source animals for xenotransplantation, vary depending on their rearing environment. We compared the diversity and composition of gut microbiota in fecal samples from pigs raised in specific pathogen-free (SPF) and conventional (non-SPF) facilities. The 16S RNA metagenome sequencing results revealed that pigs raised in non-SPF facilities exhibited greater gut microbiota diversity compared to those in SPF facilities. Genera such as Streptococcus and Ruminococcus were more abundant in SPF pigs compared to non-SPF pigs, while Blautia, Bacteroides, and Roseburia were only observed in SPF pigs. Conversely, Prevotella was exclusively present in non-SPF pigs. It was predicted that SPF pigs would show higher levels of processes related to carbohydrate and nucleotide metabolism, and environmental information processing. On the other hand, energy and lipid metabolism, as well as processes associated with genetic information, cell communication, and diseases, were predicted to be more active in the gut microbiota of non-SPF pigs. This study provides insights into how the presence or absence of microorganisms, including pathogens, in pig-rearing facilities affects the composition and function of the pigs' gut microbiota. Furthermore, this serves as a reference for tracing whether xenotransplantation source pigs were maintained in a pathogen-controlled environment.

비소세포폐암 세포주에서 Uteroglobin Transduction이 COX-2 및 IDO의 발현에 미치는 영향 (Expression of COX-2 and IDO by Uteroglobin Transduction in NSCLC Cell Lines)

  • 박근민;이상민;임재준;양석철;유철규;이춘택;한성구;심영수;김영환
    • Tuberculosis and Respiratory Diseases
    • /
    • 제66권4호
    • /
    • pp.274-279
    • /
    • 2009
  • 연구배경: Uteroglobin (UG)은 폐를 비롯한 우리 몸의 대부분의 표피세포에서 생성되는 면역조절능을 가진 분비단백이다. UG의 과발현은 cyclooxygenase (COX)-2의 발현의 감소 및 암세포의 성장억제와 관련이 있다. Indoleamine 2,3-dioxygenase (IDO)는 kynurenine pathway를 통해 tryptophan을 이화시키는 효소로서, 국소적으로 tryptopha을 고갈시키고 tryptophan 대사물을 생성 함으로써 T 세포의 면역반응을 억제시키는 데 기여한다. 방 법: 본 연구에서는 여러 비소세포폐암 세포주, 특히 A549에서 COX-2와 IDO의 발현양상 및 UG transduction 이 COX-2 및 IDO의 발현에 미치는 영향을 살펴보았다. 결 과: A549와 H460에서 구조적으로 COX-2와 IDO가 모두 발현되었고, COX-2 및 IDO의 발현은 UG transduction에 의해 감소되었다. A549에 IFN-$\gamma$를 투여했을때 COX-2 및 IDO의 발현이 약간 증가하였고, 이는 UGtransduction 시행 후 다시 감소하였다. 그러나, A549에 UG transduction 시행하여 감소된 COX-2, IDO의 발현은 IFN-$\gamma$ 투여 후에도 증가하지 않았다. A549 COX-2 sense와 A549 COX-2 anti-sense (siRNA 감염) 세포주 모두에서 COX-2의 발현여부와 상관없이 IDO가 발현되었고, UG transduction으로 인해 IDO의 발현이 감소하였다. 결 론: 이러한 결과는 UG의 세포성장억제 기능이 COX-2를 통한 기전과는 독립적으로 IDO의 면역관용 기전과 관련될 가능성이 있음을 시사한다.

암환자의 방사선치료에서 흉부 및 전골반강 조사직후 백혈구 및 림프구아헝 변화에 대한 연구 (Postirradiation Changes of White Blood Cells and Lymphocyte Subpopulations in Cancer Patients)

  • 안성자;정웅기;남택근;나병식;노영희
    • Radiation Oncology Journal
    • /
    • 제14권1호
    • /
    • pp.53-59
    • /
    • 1996
  • 목적 : 암환자에서 방사선치료에 의한 면역기능의 저하에 대해서는 많은 보고가 되어 있다. 저자들은 방사선치료부위중 비교적 활동성 골수를 많이 포함하고 있는 흥부 및 골반강조사 직후 어느정도 면역력의 저하가 오는지 알아보고자 하였다. 대상 및 방법 : 1995년 1월부터 1995년 4월까지 등록된 61 명의 환자중 48 명을 대상으로 분석 하였다. 이중 흉부(조사문, >$150cm^2$)에 방사선치료를 시행한 환자는 29명이었고 전골반강부에 방사선치료를 시행한 환자는 19명 이었다. 연령분포는 36세에서 73세 였으며 평균 및 중간값 모두 57세 였으며 남녀비는 1.3(27/21)이었다. 환자의 면역기능의 지표는 말초혈액검사에서 전혈구 및 감별혈구계산(CBC with D/C), 간기능검사, 신장기능검사 및 림프구아형검사(CD3, CD4, CD8, CDl6, CD56, CDl9)를 시행 하였으며, 검사시기는 방사선치료 직전과 4500 cGy - 5000 cGy 선량에서 동일 검사를 반복시행 하였으며, 1980cGy에서는 전혈구 및 감별혈구계산만 시행하였다. 결과 : 전체환자의 치료전 백혈구 총수는 7017이었으며 방사선치료직후 평균 4470으로 감소하였다(p=0.0000). 감별혈구계산에서는, 림프구수는 평균 2047 에서 537 로(p=0.0000) 로 감소하였고, 호중구, 호염구세포의 절대수도 통계학적으로 유의한 감소를 보였으나, 단핵세포는 변화가 없었으며, 호산구세포는 오히려 방사선치료후 증가하였으나 통계적인 의의는 없었다. 림프구아형에 대한 검사결과는, 모든아형의 절대수가 통계학적으로 유의한 감소를 보였으며, CD4/CD8비는 치료전 평균 1.09에서 0.99로 감소 하였으나 통계적인 유의성은 없었다. 전체 림프구에 대한 비율의 변화를 보면, B림프구(CD 19)는 감소하였으나, 그외 아형의 비율은 방사선치료후 변화를 보이지 않았다. 혈청면역글로불린은 초기 Ig, G, Ig A, Ig M 모두 정상값보다 눌은 수치였으며, 방사선치료에 따른 변화는 Ig M에서만이 통계적으로 유의한 감소를 보였으며, Ig G, A는유의한 변화가 없었다. 결론 : 흉부나 골반강부위의 방사선치료는 림프구의 급격한 저하를 초래하는 반면 단핵구등은 비교적 잘 유지 되었으며, 호산구는 오히려 증가 됨을 알수 있었으나, 인체의 면역과의 관계를 설명하기 위해서는 림프구의 기능변화가 함께 연구 되어져야 하겠다.

  • PDF

Viral hemorrhagic septicemia virus (VHSV) 감염에 대한 넙치 superoxide dismutase(Of-SOD)의 발현분석 (Expressional Analysis of Superoxide Dismutase in Olive Flounder (Paralichthys olivaceus) against Viral Hemorrhagic Septicemia Virus Infection)

  • 이영미;김정은;노재구;김현철;박철지;박종원;김경길;이정호
    • 생명과학회지
    • /
    • 제24권12호
    • /
    • pp.1371-1377
    • /
    • 2014
  • 활성산소종(ROS)은 환경 스트레스 및 병원체의 침입에 의한 산화 대사의 자연적인 산물로써 생물에서 생산된다. 산화적 스트레스에 의해 생성되는 superoxide 음이온 및 과산화수소와 같은 ROS는 세포와 조직에 독성을 나타낼 수 있고, 이 과정에 관여하는 superoxide dismutase (SOD)는 중요한 metalloenzyme이다. 최근 연구는 올리브 넙치(Paralichthys olivaceus)에서 SOD의 부분 유전자가 benzo[a]pyrene에 의해 강하게 발현이 유도되고 산화 스트레스 반응의 지표라고 확인하였지만, 바이러스성 감염에 대한 전사적 반응에 대해서는 조사되지 않았다. 본 연구에서는 항바이러스 반응에서 넙치 SOD의 기능을 알아보기 위해 공간 및 시간적 발현 프로파일을 분석하였다. 넙치 SOD 전사체는 정도의 차이는 있지만 다양한 기관에서 보편적으로 발현되었으며, 근육, 간, 뇌에서는 높게 발현되었고, 위와 비장에서는 상대적으로 낮게 발현되었다. VHSV 감염 후 넙치 콩팥에서 SOD 발현은 3시간 이내에 증가하였으며 점차적으로 감소하여 감염 2일째 원래 수준으로 돌아갔다. 검사 조직에 따라 발현이 유도되는 시간의 차이는 있지만 근육, 간, 뇌에서도 콩팥과 유사한 발현양상을 보였으며, 공통적으로 급성적 면역반응에서는 발현이 증가하지만 만성적 면역반응에서는 감소하였다. 이상의 결과들을 종합해 볼 때, 넙치 SOD는 넙치(P. olivaceus)의 면역 방어 시스템에 중요한 역할을 하고 넙치의 산화 스트레스에 대한 보호 효과에 기여할 것으로 기대할 수 있다.

인삼이 이식편대숙주반응, 대식세포유주저지반응 및 Trichinella spiralis의 expulsion에 미치는 영향 (Effect of Panax ginseng on the Graft-versus-Host Reaction, Production of Leucocyte Migration Inhibitory Factor and Expulsion of Adult Trichinella spiralis in Mice)

  • 하대유;이정호;김상형
    • 대한미생물학회지
    • /
    • 제21권1호
    • /
    • pp.133-144
    • /
    • 1986
  • This study was undertaken to assess the effect of ginseng administration on T lymphocyte induced local xenogenic graft-versus-host(GVM) reactions which were induced with thymocyte, spleen cell and lymph node cell of ICR mice. Mice received daily 10mg of 70% alcohol ginseng extract oral1y for 100days and control mice remained untreated for the same period of time. The cells from donor mice were injected intradermally into the closely shaven abdominal skin of Sprague-Dawley rats for GVH tests. The thymocyte from control(ginseng-untreated) mice showed a negative local GVH reaction, whereas thymocyte from experimental(ginseng-treated) mice showed a positive reaction with the rate of 17.4%. When spleen cells were injected, the incidence of positive local GVH reaction was 66.7% among ginseng-treated mice, as opposed to incidence of 45.5% of positive local GVH reaction among control mice. The incidence of positive local GVH reaction of the lymph node cells when injected into a recipient was 71.4% among ginseng-treated mice as compared with that of 18.9% among control mice. The relationship between spleen cell inoculum and intensity of the local GVH reaction was assessed in ginseng-untreated mice. The intensity of GVH reaction clearly appears to be dose related. In ginseng-treated mice, a minimum of $1{\times}10^7$ spleen cell was required for production of positive local GVH reaction with almost linear relationship up to an inoculum of $5{\times}10^8$ cells. In control mice, however, a minimum of $1{\times}10^8$ spleen cells was required for positive GVH reaction. These results strongly suggest that the ginseng administration augments significantly the local xenogenic GVH reaction which was used to assess T lymphocyte function and immunocompetence of mice and in addition to this, these results appear to support previous suggestions that the local GVH reaction consitutes a qualitative test of the functional activity of T lymphocytes. These results may be the first to induce local GVH reaction, employing rats as recipient and mice as donor. This study was also desingned to investigate some of the effects of ginseng extract on lymphocyte-macrophage interactions. This was accomplished by in vitro quantification of 1) migratory inhibitory factor(MIF) synthetic capacity of splenic lymphocytes in mice previously primed with ginseng 2) MIF responsiveness of mouse peritoneal macrophages or chicken peripheral leucocytes under the presence of ginseng extract 3) migration ability of chicken peripheral leucocytes by direct stimulation of ginseng extract or ginseng saponin and 4) immunosuppressive effects of immunosuppressants such as cyclophosphamide, cyclosporin A or dexamethasone. Mice divided equally into the ginseng and the saline groups, which received intraperitoneally daily 0.2ml of ginseng absolute alcohol-extract(5mg/ml) and same amount of saline for 15 days, respectively. The cellular immune responsiveness of these mice was assayed 15 days after ginseng pretreatment. Splenic lymphocytes of mice treated with ginseng, when stimulated with sensitized specific-antigen such as sheep red blood cells or toxoplasmin, or with polyclonal activator concanavalin A, produced significantly more MIF than those of control saline group. MIF responsiveness of normal mouse macrophages was significantly augmented when assayed under the presence of ginseng extract (1mg/ml). The migratory ability of normal chicken leucocytes in the absence of MIF was significantly decreased by the stimulation of ginseng extract alone. MIF response was significantly decreased by immunosuppressants and this impaired response was not restored by ginseng pretreatment. This study was additionally performed to evaluate the effect of ginseng on the expulsion of adult Trichinella spiralis in mice. ICR mice were infected experimentally by esophageal incubation of 300 T. spiralis infective muscle larvae prepared by acid-pepsin digestion of infected mice. and received oral administration of 70% alcohol ginseng extract(10mg/mouse/day) for the indicated days plus 4 days before infection. At various times after infection, the number of adult T. spiralis worms in small intestines was determined. Interestingly, ginseng-treatment was accompanied by accelerated expulson of T. spiralis. These results led to the conclusion that Panax ginseng caused some enhancing effect on GVH reaction, macrophage migration inhibition reaction and expulsion of T. spiralis. In addition these results suggested that the mechanisms responsible for this enhancement of ginseng may be chiefly or partially due to nonspecific stimulation of cell-mediated immune response.

  • PDF