• Title/Summary/Keyword: Immobilized cell

Search Result 320, Processing Time 0.028 seconds

Hydrogen Production from Fruit Wastes by Immobilized Cells of Enterobacter cloacae VJ-1 (Enterobacter cloacae YJ-1의 고정화세포에 의한 과일 폐기물로부터 수소생산)

  • Lee, Ki-Seok;Huh, Yang-Il;Chung, Seon-Yong;Kang, Chang-Min
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.447-452
    • /
    • 2005
  • The hydrogen production using immobilized cellsl was conducted using fruit wastewaters at various culture conditions. Three kinds of fruit wastewaters, melon, watermelon and pear were used. Sodium alginate was used as immobilization material. Among them, concentration of reducing sugar which was one of the main components in fruit was the highest at watermelon wastewater, and also hydrogen production was the highest as 2319.2 mL/L in it. Although hydrogen production was not much changed according to sodium alginate concentration, its production was the most at 3%(w/v). As bead size as small, hydrogen production was higher. With inspection of interior, it confirmed that the cell grew well in bead. But the addition of amino acids using as agent for metabolite production had almost no affected on hydrogen productivity. The effective range of $FeSO_4$ addition on hydrogen production were up to 1.2 g/L, and above the concentration, it inhibited the productivity. Organic acids produced during watermelon fermentation were mainly lactic acid, butyric acid, abd acetic acid; and a little of propionic acid.

Ethanol Production Using Alginate Immobilized Cells of Zymomonas rnobilis (고정화 Zymomonas mobilis 균체로부터 에탄올 생산)

  • 한면수;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.588-596
    • /
    • 1992
  • The fermentation characteristics of ethanol production by the use of immobilized Zymomonas mobilis KCTC 1534 cells were investigated in terms of formation factors such as substrate and product concentration. In batch fermentation, the maximum values of specific ethanol productivity, specific substrate uptake rate, ethanol yield, and glucose conversion rate were $29.14g/{\ell}{\cdot}h$, $60.24g/{\ell}{\cdot}h$, 0.48g/g, and 98.4%, respectively, with 17% glucose medium, and its ethanol productivity was $2.91g/{\ell}{\cdot}h$ in the case of 25 hour fermentation time. Repeated batch fermentation was possible for 30 days with 2.24-$2.94g/{\ell}{\cdot}h$ ethanol productivity. In semicontinuous fermentation, the maximum ethanol productivity was shown to be $15.7g/{\ell}{\cdot}h$ at $0.36h^{-1}$ effective dilution rate with 17% glucose concentration. In this case, ethanol yield coefficient and glucose conversion rate were 0.39 g/g, 64.7%, respectively.

  • PDF

Sanguiin H-6 Blocks Endothelial Cell Growth through Inhibition of VEGF Binding to VEGF Receptor

  • Lee Sung-Jin;Lee Hak-Kyo
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1270-1274
    • /
    • 2005
  • The vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, which is a process where new blood vessels develop from the endothelium of a pre-existing vasculature. VEGF exerts its activity by binding to its receptor tyrosine kinase, KDR/Flk-1, which is expressed on the surface of endothelial cells. A methanol extract and organic solvent (n-hexane, ethyl acetate, n-butanol, aqueous) fractions from Rubus coreanus were examined for their inhibitory effects on VEGF binding to the VEGF receptor. The methanol extract from the crude drug were found to significantly inhibit VEGF binding to the VEGF receptor ($IC_{50}$$\thickapprox$27 $\mu$g/mL). Among the fractions examined, the aqueous fraction from the medicinal plant showed potent inhibitory effects against the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$11 $\mu$g/mL). Sanguiin H-6 was isolated as an active principle from the aqueous fraction, and inhibited the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$0.3 $\mu$g/mL). In addition, sanguiin H-6 efficiently blocked the VEGF­induced HUVEC proliferation in a dose-dependent manner ($IC_{50}$$\thickapprox$7.4 $\mu$g/mL) but had no effect on the growth of HT1080 human fibrosarcoma cells. This suggests that sanguiin H-6 might be a potential anti-angiogenic agent.

Characteristics of Immobilized Rhodopseudomonas sp. for Wastewater Treatment (폐수처리를 위한 고정화 Rhodopseudomonas sp.균의 특성)

  • 이범규;김상희;김중균
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 1999
  • Rhodopseudomonas sp. was immobilized in three supports(agar, k-carrageenan, and PVA) in order to remove nitrate in wastewater coming from fish farm. Among them 3% agar was the most suitable support when denitrification rate and bead durability were tested. Optimum bead size was 4mm-diameter when the substrate transfer into the bead and shear stress for bead were considered, and optimum cell loading was 25mg dry $cells/cm^2$gel gel. Ethanol was the best as a carbon source, and optimum C:N ratio, temperature and pH were 1.5:1, $31^{\circ}C$,, and 6, respectively. Under these conditions the maximum denitrification rate in synthetic wastewater was $$345{\MU}{\ell};N_2/Cm^3 gel{\cdot}hr;and that in modified MYC medium was 450{\MU}{\ell}};N_2/Cm^3 gel{\cdot}hr $$.

  • PDF

Surface Modification and Fibrovascular Ingrowth of Porous Polyethylene Anophthalmic Implants

  • Yang, Hee-Seok;Park, Kwi-Deok;Son, Jun-Sik;Kim, Jae-Jin;Han, Dong-Keun;Park, Byung-Woo;Baek, Se-Hyun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.256-262
    • /
    • 2007
  • The purpose of this study was to determine the effect of surface modification on the fibrovascular ingrowth into porous polyethylene (PE) spheres ($Medpor^{(R)}$), which are used as an anophthalmic socket implant material. To make the inert, hydrophobic PE surface hydrophilic, nonporous PE film and porous PE spheres were subjected to plasma treatment and in situ acrylic acid (AA) grafting followed by the immobilization of arginine-glycine-aspartic acid (RGD) peptide. The surface-modified PE was evaluated by performing surface analyses and tested for fibroblast adhesion and proliferation in vitro. In addition, the porous PE implants were inserted for up to 3 weeks in the abdominal area of rabbits and, after their retrieval, the level of fibrovascular ingrowth within the implants was assessed in vivo. As compared to the unmodified PE control, a significant increase in the hydrophilicity of both the AA-grafted (PE-g-PAA) and RGD-immobilized PE (PE-g-RGD) was observed by the measurement of the water contact angle. The cell adhesion at 72 h was most notable in the PE-g-RGD, followed by the PE-g-PAA and PE control. There was no significant difference between the two modified surfaces. When the cross-sectional area of tissue ingrowth in vivo was evaluated, the area of fibrovascularization was the largest with PE-g-RGD. The results of immunostaining of CD31, which is indicative of the degree of vascularization, showed that the RGD-immobilized surface could elicit more widespread fibrovascularization within the porous PE implants. This work demonstrates that the present surface modifications, viz. hydrophilic AA grafting and RGD peptide immobilization, can be very effective in inducing fibrovascular ingrowth into porous PE implants.

Comparison of Regeneration Effects of Direct and Alternating Microcurrent Therapy on Atrophied Calf Muscle in a Rabbit (비복근 위축 토끼 모델에서 직류 및 교류 미세전류의 근육 재생 효과 비교)

  • Kim, Dong Han;Kwon, Dong Rak;Moon, Yong Suk
    • Clinical Pain
    • /
    • v.19 no.2
    • /
    • pp.80-89
    • /
    • 2020
  • Objective: We compared the regenerative effects of microcurrent therapy (MT) according to the type of electric current, which were direct current microcurrent therapy (DCMT) and alternating current microcurrent therapy (ACMT) on atrophied calf muscle in cast-immobilized rabbit. Method: Rabbits were allocated into control group (sham MT), ACMT group, and DCMT group. Before starting treatment, right gastrocnemius (GCM) muscle was immobilized by cast for 2 weeks. Compound muscle action potential of tibial nerve in nerve conduction study, circumference of calf muscle using a ruler, and thickness of medial and lateral GCM muscle measured by ultrasound, cross sectional area (CSA), and proliferating cell nuclear antigen (PCNA) ratios (%) of muscle fibers were measured on the immunohistochemical analysis. Results: The mean atrophic changes (%) in right medial and lateral GCM muscle thickness, right calf circumference, and amplitude of CMAP of the right tibial nerve in ACMT group and DCMT group were significantly lower than those in control group, respectively (p<0.05). The mean CSA (μm2) of type I and type II and PCNA ratios (%) of medial and lateral GCM muscle fibers in ACMT group and DCMT group were significantly greater than those in control group, respectively (p<0.05). There were no significant differences between the ACMT group and DCMT group at all parameters. Conclusion: This study demonstrated that ACMT and DCMT showed better regeneration effect than sham MT. Microcurrent may be effective in regeneration of atrophied muscle regardless of the type of current.

Modified Cellulose for Heparin Binder (헤파린 제거제용 셀룰로오스의 개질)

  • 이원규;박기동
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.259-264
    • /
    • 1994
  • Heparin binders (Cell-PALA) used for selective heparin removal from blood, were prepared by immobilizing a cationic polymer, poly(allylamine) (PALA), onto cellulose substrate by a novel method. Their absorbing capacity for heparin was compared with untreated cellulose control using heparin solution in vitro. The surface areas of obtained heparin binders and untreated cellulose were 1.36 and ($2.56{\mu} g$/$cm^2$, respectively. The amount of bound heparin to PALA immobilized celluloses was determined to be 0.16 - $0.30{\mu}g$/cm, which is much higher than that of untreated cellulose ($0.03{\mu} g$/$cm^2$). These results suggest that Cell-PALA materials can be utilized for a heparin removal system.

  • PDF

Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia alkanivorans SKF120101

  • Jeon, Bo Young;Kim, Bo Young;Jung, Il Lae;Park, Doo Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1471-1477
    • /
    • 2012
  • Carotenoids produced by non-photosynthetic bacteria protect organisms against lethal photodynamic reactions and scavenge oxygenic radicals. However, the carotenoid produced by Gordonia alkanivorans SKF120101 is coupled to reducing power generation. SKF120101 selectively produces carotenoid under light conditions. The growth yield of SKF120101 cultivated under light conditions was higher than that under dark condition. In the cyclic voltammetry, both upper and lower voltammograms for neutral red (NR) immobilized in intact cells of SKF120101 were not shifted in the condition without external redox sources but were commonly shifted downward by glucose addition and light. Electric current generation in a biofuel cell system (BFCS) catalyzed by harvested cells of SKF120101 was higher under light than dark condition. The ratio of electricity generation to glucose consumption by SKF120101 cultivated in BFCS was higher under light than dark condition. The carotenoid produced by SKF120101 catalyzes production of reducing power from light energy, first evaluated by the electrochemical technique used in this research.

LIGHT is Expressed in Foam Cells and Involved in Destabilization of Atherosclerotic Plaques through Induction of Matrix Metalloproteinase-9 and IL-8

  • Kim, Won-Jung;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.116-122
    • /
    • 2004
  • Background: LIGHT (TNFSF14) is a member of tumor necrosis factor superfamily and is the ligand for TR2 (TNFRSF14/HVEM). LIGHT is known to have proinflammatory roles in atherosclerosis. Methods: To find out the expression pattern of LIGHT in atherosclerotic plaques, immunohistochemical analysis was performed on human carotid atherosclerotic plaque specimens. LIGHT induced atherogenic events using human monocytic cell line THP-1 were also investigated. Results: Immunohistochemical analysis revealed expression of LIGHT and TR2 in foam cell rich regions in the atherosclerotic plaques. Double immunohistochemical analysis further confirmed the expression of LIGHT in foam cells. Stimulation of THP-1 cells, which express TR2, with either recombinant LIGHT or immobilized anti-TR2 monoclonal antibody induced interleukin-8 and matrix metalloproteinase(MMP)-9. Electrophoretic mobility shift assay demonstrated that LIGHT induces nuclear localization of transcription factor, nuclear factor $(NF)-{\kappa}B$. LIGHT induced activation of MMP-9 is mediated by $NF-{\kappa}B$, since treatment of THP-1 cells with the $NF-{\kappa}B$ inhibitor PDTC (pyrrolidine dithiocarbamate) completely blocked the activation of MMP-9. Conclusion: These data indicate that LIGHT is expressed in foam cells in atherosclerotic plaques and is involved in atherogenesis through activation of pro-atherogenic cytokine IL-8 and destabilization of plaque by inducing matrix degrading enzyme.

A Morphological Study on the Changes in Rat's Gastrocnemius (쥐의 비복근 섬유의 변화에 대한 형태학적 연구)

  • Huh Yang-Hoon;Choi Jae-Cheong
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.2
    • /
    • pp.71-76
    • /
    • 1998
  • Twelve Spraque-Dawley healthy male rats(average weight ; 250g)were used to study the morphological changes of mitochondria, myofibril, muscle cell nucleus, triad. They were devided into 3 groups : normal daily activity (Group 1), 2weeks immobilization (Group 2), 4 weeks immobilization(Group 3). Left ankle of Group 2 and 3 were immobilized with plaster cast in $65^{\circ}$ plantarflexed position. The gastrocnemius were removed from 12 rats. Muscle fibers were observed electronmicroscopically by double staining with uranyl acetate and lead citrate, All the variables of Group 2 and 3 that selected in this study were significantly decreased when decreased with control value (p<.05) but also muscle fibers showed extensive damage, characterized by irregularity of mitochondrias and wide separation of myofibrils. irregularity and thinness of myofilaments and abnormal shape of muscle cell nucleus and unclear triad. Especially, sarcomere length of Group 3 were singnificantly decreased when compared with Group 2(p<.01).

  • PDF