• Title/Summary/Keyword: Immersion Cooling

Search Result 26, Processing Time 0.03 seconds

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

Enhancement of the Critical Heat Flux by Using Heat Spreader

  • Yoon, Young-Sik;Hyup Yang;Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1063-1072
    • /
    • 2003
  • Direct immersion cooling has been considered as one of the promising methods to cool high power density chips. A fluorocarbon liquid such as FC-72, which is chemically and electrically compatible with microelectronic components, is known to be a proper coolant for direct immersion cooling. However, boiling in this dielectric fluid is characterized by its small value of the critical heat flux. In this experimental study, we tried to enhance the critical heat flux by increasing the nucleate boiling area in the heat spreader (Conductive Immersion Cooling Module). Heat nux of 2 MW/㎡ was successfully removed at the heat source temperature below 78$^{\circ}C$ in FC-72. Some modified boiling curves at high heat flux were obtained from these modules. Also, the concept of conduction path length is very important in enhancing the critical heat flux by increasing the heat spreader surface area where nucleate boiling occurs.

A Study on Heating Characteristics of Li-ion Battery Applicated Single-phase Immersion Cooling Technology (단상계 침지냉각 기술이 적용된 Li-ion계 배터리 발열특성에 관한 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Giseok
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.163-172
    • /
    • 2022
  • Purpose: To secure efficient thermal management technology for Li-ion batteries, the applicability of the system applied with single-phase immersion technology was checked through an experiment. Method: Using JH3 pouch cells produced by LG-Chem, Korea, A 14S2P module was manufactured and immersed in a vegetable-based cooling fluid produced by Cargill, USA, and then charged and discharged at a rate of 0.3C to 1C to check the heat distribution. Result: It was possible to manage and there was no change in the molecular structure of the immersion solution. Conclusion: It was confirmed that the immersion cooling method can be applied to the thermal management of Li-ion batteries.

Study on the Thermal Behavior of Immersion Cooled LED Lighting Engines (담금 냉각되는 LED 조명엔진의 열특성에 대한 연구)

  • Kim, Kyoung Joon
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.87-92
    • /
    • 2014
  • This study is aimed at investigating the thermal behavior of immersion-cooled high power LED lighting engines. 3D CFD models have been generated for the numerical analysis. Five cases in terms of the configuration of LED chips have been explored for various passive cooling conditions of the lighting engine, i.e., the natural air convection with a lens, the natural air convection without a lens, the deionized water-immersion cooling condition with a lens. The numerical study reveals that the deionized water-immersion cooled lighting engine has nearly twice better thermal performance than the natural air convection cooled lighting engine containing a lens. The investigation has also demonstrated that the four chips configuration has the better thermal performance than the single chip configuration.

Effect of Cooling Hands in the Cold Water for the Physiological Responses and Clothing Comfort -Focused on Vascular Hunting Reaction, Thermal Sensation and Pain Sensation- (손의 한랭자극이 인체생리반응과 의복의 쾌적성에 미치는 영향 -한랭혈관반응, 온랭감각, 한랭통증을 중심으로-)

  • 이원자
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.2
    • /
    • pp.279-289
    • /
    • 2004
  • This study was conducted to compare the hunting reaction of finger in the cold water. Finger skin temperature is measured the left middle finger tip immersion in cold water of 5℃ for 30 minutes and measurements were made on finger skin temperature(Ts), thermal comfort, and cold pain sensations during the experiment at the spring (March) and Winter(December). Results were follows. Is before immersion was at the highest in spring and at the lowest in winter and was closely related to the indoor temperature Ts during immersion and recovery. Mean of finger skin temperature(MST), the skin temperature at the first rise(TTR) and amplitude of finger skin temperature reaction during immersion(AT) were significant higher in spring than that in winter(P<.01). The lowest skin temperature(LST) during the cold water immersion were significantly higher in spring than that in winter (P<.05). The frequency of the appearance of cold-Induced vase dilation(CIVD) was higher in spring than that in winter. However, time for the first temperature(TTR) and recovery time(RT) had no seasonal variation. In addition, cold pains during immersion were felt more strongly in spring than in winter. Local thermal sensation, finger thermal sensation in dynamic state during hand immersion was different from that in the Winter. Spring was slowly cold in cold water immersion.

  • PDF

Experimental Study of Cooling Fan Performance Analysis and Shroud Characteristics for an Excavator (굴삭기 냉각팬 성능해석 및 슈라우드 특성에 대한 실험적 연구)

  • Lee, Jae-Seok;Chung, Kyung-Nam;Kim, Jin-Young;Lee, Tae-Kyung;Kang, Jeong-Won;Shim, Jae-Koo;Son, Deuk-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2597-2602
    • /
    • 2007
  • In this paper, the performance analysis is experimentally carried out in order to select the best cooling fan and shroud considering both cooling performance and noise reduction. 4 cooling fans have been tested in the fan tester and the real excavator. In order to obtain the performance of the cooling fans, flow capacity has been estimated by measuring flow velocity using a hot wire anemometer, and noise radiation has been also measured to estimate the fan noise. Characteristics of a box-type and a streamlined shroud have been examined by changing the immersion depth of cooling fans. Based upon the results, the best cooling fan is selected. Finally, the criterion to select the best cooling fan has been set up.

  • PDF

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Boiling Heat Transfer from a locally Heated Surface -A Simulated Electronic Device under Liquid Immersion Cooling- (국부적인 발열부분을 가진 표면에서의 잠김 비등열전달 -전자부품 액침 냉각에서의 응용-)

  • 하광순;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.685-692
    • /
    • 1991
  • The pool boiling behavior of a heated surface has been investigated experimentally, focusing on the cases when only a part of the contact surface is heated. Characteristic boiling curves are obtained with circular metal surface test pieces heated below while immersed in Refrigerant-113. Locally heated test pieces are fabricated by inserting a heating block at the center inside a larger conducting block. Overall heat transfer rates are measured while the experimental conditions are systematically varied. The local temperature profiles along the radius are measured for conducting blocks. It is found that the conjugated boiling condition exists and the total heat fluxes should be correlated to a suitably defined temperature difference.

A Study on the Heat Transfer of the High Temperature Metals in Quenching - The Latent Heat of Phase Transformation and Cooling Curves - (고온강재의 담금질 전열에 관한 연구)

  • 윤석훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.321-327
    • /
    • 1991
  • Experiments of quenching were made with cylindrical specimens of carbon steel S45C of diameters from 12 to 30mm were performed. The specimens were heated by electric furnace and quenched by immersion method. In order to analyze the temperature profile(cooling curves) of carbon steel including the latent heat of phase transformation, nonlinear heat conduction problem was calculated by the numerical method of inverse heat conduction problem using the apparent heat capacity method. The difference between the calculated and the experimented cooling curves was caused by the latent heat of phase transformation, and the effects of the latent heat were especially manifest at the cooling curves of center of specimens. The temperature and the quantity of the latent heat of phase transformation depend on the cooling speed at A sub(1) transformation point, and the region for cooling speed to become zero was caused by the latent heat of phase transformation.

  • PDF

The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer (노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구)

  • Lee, J.W.;Kang, Y.G.;Baek, B.J.;Park, B.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF