• Title/Summary/Keyword: Immersed Boundary

Search Result 186, Processing Time 0.021 seconds

Forces Induced by Flows Past Two Nearby Circular Cylinders (두 개의 원형 실린더에 작용하는 유체력)

  • Lee, Kyong-Jun;Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.754-763
    • /
    • 2007
  • Flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re=100 were numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of flow-induced forces are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of force coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for drag coefficient and lift coefficient for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate flow-induced forces on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

On the Free Vibration of Immersed Linearly Tapered Beam with a Tip Mass (첨단 질량을 갖는 선형 원뿔대의 자유진동)

  • Shin, Young-Jae;Sung, Kyung-Yun;Yun, Jong-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1054-1059
    • /
    • 2002
  • A linearly tapered beam immersed partially in other material is considered and is modelled as a linearly tapered Bernoulli-Euler beam fixed at the bottom with a concentrated mass at the top. Its governing equations is derived and its free vibration analysis is performed for various boundary conditions. And the rotatory inertia of the eccentric lumped tip mass is considered. The problem of determining the natural frequencies leads to an eighth order determinant. The solutions of the frequency equations are obtained numerically. The non-dimensional frequency parameters are given in tabular form and the influence of non-dimensional parameters on natural frequency is discussed for various conditions.

  • PDF

Vibration Analysis for Partially Immersed Shell Structure in Water with Gap from Bottom (부분적으로 물에 잠겨있는 Shell 구조물의 바닥면과 거리변화에 따른 진동해석 연구)

  • Koo, Jae-R.;Kwak, Moon-K.;Song, Oh-S.;Bae, Chun-H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.905-915
    • /
    • 2011
  • The free flexural vibration of a hanged clamped-free cylindrical shell partially submerged in water with gap from bottom is investigated. The fluid is assumed to be inviscid and irrotational. The cylindrical shell is modeled by using the Rayleigh-Ritz method based on the Sanders shell theory. The kinetic energy of the fluid is derived by solving the boundary-value problem related to the fluid motion. The natural vibration characteristics of the partially submerged cylindrical shell are discussed with respect to the added virtual mass approach. In this study, experiments were carried out to confirm theoretical results. It was found that theoretical prediction is in good agreement with experimental results.

HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS (주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

A Study on a Moving Adaptive Grid Generation Method Using a Level-set Scheme (레벨셋법을 이용한 이동 집중격자 생성법에 대한 연구)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.18-27
    • /
    • 2002
  • In order to improve the accuracy of the solution near the boundary in an analysis of viscous flow around an arbitrary boundary which move and be deformed using an Eulerian concept, a level-set based grid deformation method is introduced to concentrate grid points near the boundary. This paper presents a new monitor function which can easily control the level of the concentration of grid points along the boundary. Computations for steady flow around a semi-circular cylinder mounted on the bottom of the flow domain were carried out to check the improvement of the solution using the adaptive grid system with an immersed boundary method. The present numerical results show a good agreement with the solutions obtained by a body fitted grid system and more accurate solutions than those computed with non-adaptive grid system. For the validation of mechanical usefulness of the present method, an expanded analysis of flow around multi-body fixed in the flow domain was carried out. Finally, the present moving adaptive grid method was applied to a two-dimensional bubble rise problem. The computed results show well adapted grid points around the boundary of the bubble at every time and a good agreement with the result calculated by fixed grid system.

Multiple solutions for steady state natural convection adjacent to an inclined isothermal flat plate in the region of largely upflow (상향유동 영역에서 경상등온평면에 의하여 야기된정상장태 자연대류의 다중해)

  • 유갑종;김병하;최병철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.731-739
    • /
    • 1987
  • This study has been performed on multiple steady-state natural convection in the upflow region induced by an inclined isothermal plate immersed in pure cold water. The newly found additional steady-state solutions are of considerable practical interest because the heat-transfer rates for a pair of solutions with determining physical parameters and boundary conditions otherwise identical are sometimes vastly different. The results are as follows: First, in the largely upflow region, two solutions exist for 0.15157

Wake Patterns of Two Oscillating Cylinders

  • Lee, Dae-Sung;Ha, Man-Yeong;Yoon, Hyun-Sik
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.78-85
    • /
    • 2006
  • Flows around two oscillating cylinders in side-by-side arrangement at Re=185 are simulated using immersed boundary method. The cylinders oscillate vertically with prescribed sinusoidal function in opposite directions in uniform cross-flow. Flow patterns and drag & lift forces are described by varying distance between two cylinders and oscillating frequency. Time series of flow patterns are investigated along with corresponding drag k lift coefficients.

  • PDF

A SHARP INTEGRAL INEQUALITY FOR COMPACT LINEAR WEINGARTEN HYPERSURFACES

  • de Lima, Henrique F.;dos Santos, Fabio R.;Rocha, Lucas S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.789-799
    • /
    • 2022
  • We establish a sharp integral inequality related to compact (without boundary) linear Weingarten hypersurfaces (immersed) in a locally symmetric Einstein manifold and we apply it to characterize totally umbilical hypersurfaces and isoparametric hypersurfaces with two distinct principal curvatures, one which is simple, in such an ambient space. Our approach is based on the ideas and techniques introduced by Alías and Meléndez in [4] for the case of hypersurfaces with constant scalar curvature in an Euclidean round sphere.