Wake Patterns of Two Oscillating Cylinders

Dae Sung Lee”, Man Yeong Ha' , Hyun Sik Yoon""

Abstract

Flows around two oscillating cylinders in side-by-side arrangement at Re=185 are simulated using
immersed boundary method. The cylinders oscillate vertically with prescribed sinusoidal function in opposite
directions in uniform cross-flow. Flow patterns and drag & lift forces are described by varying distance
between two cylinders and oscillating frequency. Time series of flow patterns are investigated along with

corresponding drag & lift coefficients.
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1. Introduction

Oscillating cylinders in cross or stationary flow are
frequently observed in engineering problems such as
offshore structure and power cable. Naturally there are a
lot of researches on the oscillating cylinders.

Williamson and Roshko'”, Gu et al®, Guilmineau and
Queutey® studied flow over single oscillating cylinder.
Gu et al® investigated flow over an oscillating cylinder
where Reynolds number as 185 and 5000 with
experiment. The frequency ratios which are defined as
oscillating frequency over natural vortex shedding
frequency of fixed cylinder were 0.8, 0.9, 1.0, 1.1, 1.12
and 1.2.

Kang® investigated flows over two stationary
cylinders in side-by-side arrangement at
40<Re<160 and the gap spacing between two
cylinders divide by cylinder diameter, g is less than 5.

He classified six wake patterns as “anti-phase
synchronized” ( g=>2 ), “in-phase synchronized”
(g=1.5), “flip-flopping” (0.4 £ g £1.5), “single bluff-
body” ( g<04 ), “deflected” ( 50<Re<110 and
02<g<1) and “steady” wake patterns (Re < 40and
£20.5).

Mahir and Rockwell® experimentally studied flows
over two oscillating cylinders in side-by-side

arrangement in a cross flow. Two cylinders oscillated
independently with variable phase angle between two
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cylinders’ position at Re=160. They varied frequency
ratio, phase angle and amplitude and measured velocities
in the wake. They focused Fourier transformed velocity
in the wake and instantaneous fields and investigated the
lock-on phenomenon.

As there are a few results for flows over two
oscillating cylinders, wake patterns of two oscillating
cylinders will be investigated numerically in this study.

2. Numerical details

The governing equations which are non-
dimensionalized by free stream velocity, U and cylinder
diameter, D are as follows:
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Here, g is mass sink/source, f; is momentum

forcing, Re is Reynolds number. Oscillating cylinders
are implemented by immersed boundary method of
Kim et al®.

Finite volume method with non-uniform gird is adopted.
We used Adams-Bashforth for convection terms, Crank-
Nicolson for diffusion terms and central difference for
space discretization. Continuity is satisfied with
fractional step method™” for every time step.

Computational domain is -60<x<40 and -60<y<60.

Boundary conditions are described in Fig. 1.

900 %682 grid points are used and near the cylinder

Ax=0.01 and Ay =0.01 isused.
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Fig. 1. Computational domains and boundary
conditions.

Cylinder oscillation is described in Fig. 1. The
Reynolds number is 185 and oscillation amplitude, 4, is

0.2 and frequency, f, is varied. The natural vortex

shedding frequency of one fixed cylinder at Re=185,
Jo1s 0.192. The frequency ratio, f,/f, is 0.8, 1.0 and

1.2 in this study.

3. Results

Two oscillating cylinders have characteristics of
oscillation and multiple cylinders with variable gap
between cylinders. As cylinders oscillate, the
characteristics may differ from those of stationary
cylinders and flow pattern of two cylinders is different
from that of one cylinder. In this study, the gap between
two cylinders is the primary parameter and the
oscillation frequency is the secondary parameter and the
results will be described in this order.

Firstly, the largest dimensionless gap between two
cylinders in this study, for g,=1.8, dimensionless gap

are between 1.4 and 2.2 as the two cylinders oscillates.
According to Kang®, for two stationary cylinders with
1.4<g<22 at Re=185 shows anti- or in-phase

synchronized pattern.
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Fig. 2. Drag and lift coefficients of g,=1.8 and
f./f, =0.8.
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Fig. 3. Times series of instantaneous vorticity fields
for g,=1.8and f,/f, =0.8

Fig. 2 shows time evolution of drag and lift
coefficients for upper and lower cylinder for g,=1.8

and f,/f, =0.8. Solid line is for upper cylinder and

dashed line is for lower cylinder. Drag coefficient is
composed of fluctuating ((a)-(d), (g)-(j)) and rather flat
patterns ((d)-(g)). Every index, ‘a’ - ‘j° in Fig. 2
corresponds to indexed instantaneous vorticity field in
Fig. 3 which shows instantaneous vorticity fields of two
oscillating cylinders when the two cylinders are at the
furthest and closest positions in turn. (Hereinafter every
instantaneous fields are plotted in this manner) Anti-
phase vortex shedding forms two parallel anti-phase
streets that are symmetric to the centerline. In Fig 3 (a),
outer vortices that are rolled up around the cylinder reach
about 1.7 in x-direction. The length of outer vortices
keeps increasing in Fig. (a), (c), (¢) and (g) and suddenly
decreases in (i) and this happens periodically. The
structure of wake patterns is kept symmetrically to far
downstream without merge. While those phenomenon
like modulation is not shown for one oscillation
cylinder £,/ f, =0.8, it can be seen for two oscillating

cylinders with interferences between symmetric vortices
from two cylinders.
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Fig. 4. Drag and lift coefficients of g, =1.8 and
1.]f =10

Fig. 5. Times series of instantaneous vorticity fields
for g,=1.8and f,/f,=1.0

When f,/f, =1.0 that is near resonance frequency

ratio, Fig. 4 shows very regular drag and lift coefficients.
Unlike f,/f, =0.8, f./f, =1.0 has same patterns for

same furthest positions and closest positions respectively
in Fig. 5 which shows instantaneous vorticity fields.
Therefore only two instantaneous vorticity fields are
shown in Fig. 5. The vortices in the wake keep their
symmetric forms without merging or distortion to far
down stream.

As oscillating frequency is increased to 1.2,
symmetric wake pattern breaks and modulation
phenomenon appeared. Even though two stationary
cylinders withg,=1.8 does not have flip-flop pattern,

drag coefficients shows flip-flop like pattern because of
asymmetry. Fig. 6 shows a part of asymmetric and
periodic drag and lift coefficients and points from (a) to
(1) make one period. Vortices are asymmetric and some
of them are merged and distorted while flowing to
downstream.
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Fig. 6. Drag and lift coefficients
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Fig. 7. Times series of instantaneous vorticity fields
for g,=1.8and f,/f, =12

In Fig. 7 (a) and (c), the inner vortices around the
cylinders are rather long and they are to be cut by outer
vortices, but in (e) they became short suddenly and are
going to cut the outer vortices. The position of vortex
shedding is switched. It is similar to vortex switching
that is found in one oscillating cylinder as frequency
ratio is increased over near 1.1%%, However, for one
oscillating cylinder vortex switching is found as the
frequency ratio is increased while it happens for same
frequency ratio for two cylinders. The inner vortices are
kept short till (k) and (m) has same wake pattern with (a),
so (a) — (I) makes one complete period. Comparing with
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they have same

f.]f, =08 and f/f, =12,

phenomenon such as the change of length of vortices
around the cylinders and similar history of drag
coefficient that has fluctuating and rather flat patterns.
For g,=1.8, in-phase synchronized and deflected pattern

are found for0.8< f,/f, <1.2.
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Fig. 8. Drag and lift coefficients of g,=1.4 and
f./f, =0.8

Fig. 9. Times series of instantaneous vorticity fields
for g,=l.4and f,/f, =0.8

When the g, is decreased to 1.4, gis between 1.0

and 1.8. That regime includes flip-flop and anti- or in-
phase synchronized wake pattern for two stationary
cylinders. ® Time history of drag and lift coefficients of
two oscillating cylinders are depicted in Fig. 8 and they
are similar to Fig. 2 for g, =1.8 and f,/f, =0.8.

However, upper and lower drag coefficients are not same
and upper and lower lift coefficients are not symmetric.
Fig. 9 (a) and (g) looks very similar to each other and
points from (a) to (f) makes one complete period. The
outer vortices around the upper cylinder are getting
shorter as time goes by in Fig. 9 (a), (c), (¢) and get
longer again in (g). As g has flip-flop region for two
stationary cylinders, also oscillating cylinders have
asymmetric wake pattern. However, drag coefficients in
Fig. 8 are seemed to be deflected pattern rather than flip-
flop pattern. According to Kang®, it can be inferred that
the deflected wake pattern should be another kind of the
flip-flopping pattern with extremely large flip-flopping
time scale as mentioning Kim and Durbin’s
observation®. In their study, the time scale for the flip-
flopping exponentially increased with decreasing
Reynolds number at high Reynolds numbers and its
extrapolation to low Reynolds numbers would give
extremely large time scales.

As frequency ratio, f,/f, is increased to 1.0, the

pattern of drag and lift coefficients and instantaneous
vorticity fields are similar to the case of g,=1.8. So, the

figures for £,/ f, =1.0 are omitted.

Unlike g, =1.8, even if the frequency ratio is
increased to 1.2, the symmetric pattern is kept. Flow over
two stationary cylinders is asymmetric for g,=1.8 and in-
phase synchronized for g, =1.4. The flow pattern is
symmetric for two oscillating cylinders with g,=1.4 and
asymmetric for g, =1.8. The characteristics of stationary

flow may affect flow over oscillating cylinders. Fig. 11
(a) and (m) are nearly same and the length of outer
vortices keep decreasing through (a) to (k) and (m)
shows vortices as long as (a). So, the period is inferred to
be from (a) to (1). All characteristics are similar to that of
g,~1.8 except of symmetry of flow pattem. For g,=1.4,

in-phase synchronized and deflected pattern are found
for 0.8< f,/f, <1.2.
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Fig. 10. Drag and lift coefficients of g,=1.4 and
111, =12
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Fig. 11. Times series of instantaneous vorticity fields
for g,=l.4and f,/f, =12
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Fig. 12. Drag and lift coefficients of g,=1.0 and

Fig. 13. Times series of instantaneous vorticity fields
for g,=1.0and f,/f, =038

When the g, is decreased to 1.0, g is between 0.6
and 1.4. That regime includes flip-flop and anti- or in-
phase synchronized wake pattern for two stationary
cylinders. “ For f, / f, =0.8, drag and lift coefficients are
described in Fig. 12 and patterns more irregular
comparing with g, =1.4. According to the drag
coefficients, flip-flop pattern can be found but anti- or in-
phase synchronized pattern cannot be found.
Instantaneous vorticity patterns are shown in Fig. 13. In
instantaneous fields, some has symmetric pattern for
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only near wake and some has deflected near wake pattern.

Vortices shed from the cylinders are distorted and
merged soon making complex and random wake pattern
and periodic pattern is not clear. When the cylinders are
in closest positions, they are so close that vortex
shedding is interfered from each other. Far downstream
is different from those of previous cases which have the
form of two row streets.

3rcC,

D E

P PR PR N SO
280 300 310
Time

Fig. 14. Drag and lift coefficients of g,=1.0 and
L/ =12

Fig. 15. Times series of instantaneous vorticity fields
for g,=l.0and f,/f, =1.2

For f,/f, =1.0, the pattern of drag and lift

coefficients and instantaneous vorticity fields are similar
to the case of g,=1.8. So, the figures for f,/f, =1.0

are omitted.
When f,/f, is increased to 1.2, Fig. 14 and Fig. 15

show drag and lift coefficients and instantaneous
vorticity fields respectively. While the wake patterns of
g,=1.4 and 1.8 show periodicity with irregular drag and

lift coefficients, g,=1.0 shows unclear sign of periodicity

with rather regular drag and lift coefficients. The vortices
near the cylinders are anti-phase synchronized patterns
except Fig. 15 (i) that seems to be rather in-phase than
anti-phase. Regular vortices near cylinders are keeping
their form from (a) to (e), but in (h) the vortices are
distorted and merged. After merging of two rows of
streets, wake pattern is similar to the single bluff body.
For g, =1.0, single bluff body, flip-flop in-phase
synchronized and anti-phased synchronized pattern are
found for0.8< £, /f, <1.2.

When the g,is decreased to 0.6, gis between 0.2

and 1.0. That regime includes single bluff body and flip-
flop wake patterns for two stationary cylinders.
For f,/f, is 0.8, as the gap between two cylinders

are so small, vortex shedding is suppressed and shed
vortices experience interference from each other. So, the
drag and lift coefTicients are random and asymmetric in
Fig. 16. The outer vortices merge right after they shed
from the cylinders and form the wake pattern similar to
that of single bluff body. In Fig. 17 (a), outer vortex
around the upper cylinder cuts the outer vortex of lower
cylinder as the two vortices are from the same single
bluff body.

Even though f,//, is 1.0, unlike other cases with

same frequency ratio, drag and lift coefficients in Fig. 18
are asymmetric and deflected. As the cylinder oscillates
with near resonance frequency, the vortex shedding is
stronger and far down stream wake pattern in Fig. 19
look like single bluff body than £, / f, =0.8.

3 E
C,\ abcdefghtityj 6

T I SV T VL A
250 260 270 280
Time

Fig. 16. Drag and lift coefficients of g, =0.6 and
flf, =08
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Fig. 17. Times series of instantaneous vorticity fields
for g,=1.0and f,/f,=0.8

Fig. 18. Drag and lift coefficients of g,=0.6 and
/1, =10

If £,/ f, is increased to 1.2, general pattern of drag

and lift coefficients in Fig. 20 are similar to the case of
g,=1.0 and f,/f, =12 and now the modulation is

nearly disappeared. Wake pattern in Fig. 21 has no
symmetric part that are partially found in g,=1.0.

As g,is increased, the portion of two row vortex
streets is increased. For g, =1.0, single bluff body, flip-
flop pattern are found for0.8< f,/f, <1.2.
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Fig. 19. Times series of instantaneous vorticity fields

for g,=0.6and f,/f, =1.0
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Fig. 20. Drag and lift coefficients of g,=0.6 and

L1, =12
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Fig. 21. Times series of instantaneous vorticity fields
for g,=0.6and f,/f, =12

4. Conclusions

Wake pattern of two oscillating cylinders are
numerically investigated. The dimensionless gap
between two cylinders and frequency ratio are the main
parameters that determine wake patterns.

Various wake patterns of two stationary cylinders can
be found in oscillating cylinders for same dimensionless
gap and the also additional patterns can be seen for
oscillating cylinders with oscillation effect.

Oscillation frequency has strong effect on the pattern
of drag & lift coefficients and also flow patterns except

small gap such as g, =0.6. For f,/f, =1.0, near
resonance frequency ratio, flow pattern is nearly same
for g, >0.6.

Two oscillating cylinders have different flow patterns
from the single oscillating cylinders for same frequency
ratio as the vortices interfere together.
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