• Title/Summary/Keyword: Imine complex

Search Result 16, Processing Time 0.022 seconds

Synthesis, Molecular Structure and Mesomorphic Phase Behavior of${\eta}^1$-Benzylideneaniline Palladium(II) Complexes

  • Yu, Yong Sik;Im, Jun Hwan;Han, Bong Hwan;Lee, Myeong Su;Choe, Mun Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1350-1360
    • /
    • 2001
  • The synthesis and characterization of very stable Pd(Ⅱ) η1-imine complexes of bis(3,4-dialkyloxybenzylidene-3', 4'-dialkyloxyaniline)dichloropalladium(Ⅱ) with alkyl chain of hexyl (8), octyl (9), decyl (10) and dodecyl (11) groups, a nd of bis(4-ethyloxybenzylidene-4'-ethyloxyaniline)dichloropalladium(Ⅱ) as a model complex are described. The molecular structure with twisted board-like geometry of the complex resulting from the coordination of Pd(Ⅱ) with η1-imine bonding was confirmed by X-ray crystallographic analysis of the model complex. In contrast to the imine ligands, all the complexes with an exception of 11 display a thermally stable monotropic smectic A mesophase without any decomposition of the complex. These results, characterized by a combination of differential scanning calorimetry, optical polarized microscopy, and powder X-ray scattering experiments, are discussed.

Synthesis and Structure of Nickel(II) Complex with N-Benzylisonitrosoacetylacetone Imine (N-Benzylisonitrosoacetylacetone Imine Ni(II) 착물의 합성 및 구조)

  • Byung Kyo Lee;Dae Sub O;Heung Lark Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.536-542
    • /
    • 1988
  • A nickel(Ⅱ) complex, Ni(IAA-NBz) (IAA-NBz') with ligand, N-benzylisonitrosoacetyl acetone imine (H-IAA-NBz) has been synthesized. This complex is very stable at room temperature and has cis-form and trans-form isomers. The ratio of nickel (Ⅱ) ion and ligand combined is 1 : 2. The elemental analysis, ir, nmr. electronic spectra and mass spectra have been studied. It is suggested from these studies that the isonitroso group of one ligand, H-IAA-NBz coordinates to nickel(Ⅱ)ion through the nitrogen atom to form five-membered ring, while that of the other ligand, H-IAA-NBz coordinates to nickel (Ⅱ) ion through the oxygen atom to form six-membered ring in square-planar complex.

  • PDF

Complexation of Polyelectroyte-Metal(II) Ion. III. The Complex Formation of Iron(II), Cobalt(II), Nickel(II) and Copper(II) with Branched Poly(ethylene imine) (BPEI) in Aqueous Solution (Polyelectrolyte-Metal(II) 이온의 착물화 (제 3 보). Iron(II), Cobalt(II) Nickel(II) 및 Copper(II)와 Branched Poly(ethylene imine) (BPEI)간의 착물생성)

  • Dong Soo Kim;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.456-464
    • /
    • 1986
  • The complex formation of branched poly(ethylene imine) (BPEI) with bivalent transition metal ions, such as Fe(II), Co(II), Ni(II) and Cu(II), have been investigated in terms of visible absorption and pH titration methods in an aqueous solution in 0.1M KCl at 30${\circ}$. The stability constants for M(II)-BPEI complexes was calculated with the modified Bjerrum method. The formation curves of M(II)-BPEI complexes showed that Fe(II), Co(II), Ni(II) and Cu(II) ions formed coordination compounds with four, two, two, and two ethylene imine group, respectively. In the case of Cu(II)-BPEI complex at pH 3.4 ∼ 3.8, ${\lambda}_{max}$ was shifted to the red region with a decrease in the acidity. The overall stability constants (log $K_2$) increased as the following order, Co(II) < Cu(II) < Ni(II) < Fe(II).

  • PDF

The Fluorescence Behavior of the Responsive Macrocycle by Aromatic Imine Molecules

  • Choi, Chang-Shik;Jeon, Ki-Seok;Lee, Ki-Hwan
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.71-74
    • /
    • 2004
  • The macrocycle L exhibited a switch on-off behavior through the fluorescent responses by aromatic imine molecule 1 (X=H) / trifluoroacetic acid (TFA). In the 'switch on' state, it was supposed that the aromatic imine molecule 1 is in the cavity of macrocycle L and a photoinduced electron transfer (PET) from the nitrogen of azacrown part to the anthryl group is inhibited by the interaction between the aromatic imine molecule 1 and the azacrown part of macrocycle L. In the 'switch off' state, it was supposed that the protonated imine molecule 1 is induced by the continuous addition of TFA and a repulsion between the protonated azacrown part and the protonated imine molecule 1 is occurred. It was considered that this process induces the intermolecular PET from the protonated imine molecule 1 to the anthryl group of macrocycle L because of a proximity effect between the anthryl group and the protonated imine molecule 1. From the investigation of the transient emission decay curve, the macrocycle L showed three components (3.45 ns (79.72%), 0.61 ns (14.53%), and 0.10 ns (5.75%). When the imine molecule 1 was added in the macrocycle L as molar ratio=1:1, the first main component showed a little longer lifetime as 3.68 ns (82.75%) although the other two components were similar as 0.64 ns (14.28%) and 0.08 ns (2.96%). On the contrary, when the imine molecule 3 (X=C1) was added in the macrocycle L as molar ratio=l:1, all the three components were decreased such as 3.27 ns (69.83%), 0.44 ns (13.24%), and 0.06 ns (16.93%). The fluorescent pH titration of macrocycle L was carried out from pH=3 to pH=9. The macrocycle L and C $U^{2+}$- macrocycle L complex were intersected at about pH=5, while the E $u^{3+}$ -macrocycle L complex was intersected at about pH=5.5. In addtion, we investigated the fluorescence change of macrocycle L as a function of the substituent constant ($\sigma$$_{p}$$^{o}$) showing in the para-substituent with electron withdrawing groups (X=F, Cl) and electron donating groups (X=C $H_3$, OC $H_3$, N(C $H_3$)$_2$), respectively, as well as non-substituent (X=H).).ctively, as well as non-substituent (X=H).

  • PDF

Spectrophotometric Study of Copper Complex of N-Benzylisonitrosoacetylacetone Imine (N-Benzylisonitrosoacetylacetone Imine의 구리착물에 대한 분광광도법적 연구)

  • Byung Kyo Lee;Dae Sub O;Heung Rak Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.201-206
    • /
    • 1986
  • A new analytical reagent N-benzylisonitrosoacetylacetone imine (H-IAA-N-Bz) has been synthesized and identified its structure by IR, NMR and mass spectra. H-IAA-N-Bz forms a copper chloroform-soluble complex in a basic aqueous solution (pH = 7.0∼10.0). The other optimum conditions for the spectrophotometric study of the copper complex have been determined at 420nm. Beer's law is obeyed below the concentration of 64$\mu$g of copper per 10ml of chloroform. The composition of the copper complex has been found to be $Cu(IAA-N-Bz)_2$ and the over-all stability constant is calculated to be $8.55 {\times} 10^6$. The molar absorption coefficient, $\varepsilon$ of the $Cu-(IAA-N-Bz)_2 $complex is 3500l/$cm{\cdot}mol$.

  • PDF

Preparation and Characterization of Tin(II) Complexes with Isomeric Series of Schiff Bases as Ligands

  • Refat, M. S.;Sadeek, S. A.
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2006
  • Complexes of Sn(II) with L1 = acac-o-phdnH2 [N,N'-o-phenylene bis(acetylacetoneimine)], L2 = acac-m-phdnH2 [N,N'-m-phenylene bis(acetylacetoneimine)] and L3 = acac-p-phdnH2 [N,N'-p-phenylene bis(acetylacetoneimine)] have been prepared and characterized by elemental analyses, vibrational, electronic spectra and thermal studies (TGA and DTA). Vibrational spectra indicated the coordination mode of imine and carbonyl oxygen for ligands giving (ONNO) that belong to C2V point group symmetry. The [Sn(L3)] complex has a maximum activation energy and [Sn(L2)] complex has a minimum activation energy.

The role of chemical bond as the preparation of polynuclear metal dendritic molecule for PDD or PDT

  • Choi, Chang-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.391-393
    • /
    • 2022
  • The preparation of polynuclear metal dendritic molecule for photodynamic diagnosis(PDD) or photodynamic therapy(PDT) has been interested on design and synthesis of metal-to-metal long ranged macromolecule. Herein, imine bond or amide bond as chemical bond is an important role on the construction of energy transfer or electron transfer system. Therefore, we will be presented on the role of chemical bond for the preparation of polynuclear metal dendritic molecule.

  • PDF

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes

  • Park, Jin-Kyoung;Won, Jong-Ok;Kim, Chan-Kyung
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.581-586
    • /
    • 2007
  • Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.

Synthesis and Characterization of the Surface Modified SBA-15 with Dicobaltcarbonyl Complex

  • Park, Sora;Jeon, Yea-Sel;Jun, Ki-Won;Lee, Yun-Jo;Han, Doug-Young;Kim, Hyung Jin;Hwang, Kwang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2077-2080
    • /
    • 2014
  • Cobalt-immobilized SBA-15 6a-c was synthesized from alkyne-attached SBA 5a-c by the reaction with $Co_2(CO)_8$ in toluene. Alkyne group was introduced into amino SBA-15 (4) by imine-linkage or substitution with propargyl bromide to afford iminoalkyne 5a and aminoalkyne 5b, respectively. Meanwhile, alkyne 5c was prepared in one-step by reacting triethoxysilyl hexyne with SBA-15. Dicobalt-complexes 6a-c were characterized by means of FT-IR, solid-state NMR and elemental analysis.

Structure and Heme-Independent Peroxidase Activity of a Fully-Coordinated Mononuclear Mn(II) Complex with a Schiff-Base Tripodal Ligand Containing Three Imidazole Groups

  • Sarkar, Shuranjan;Moon, Do-Hyun;Lah, Myoung-Soo;Lee, Hong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3173-3179
    • /
    • 2010
  • New complex $[Mn(II)H_{1.5}L]_2[Mn(II)H_3L]_2(ClO_4)_5{\cdot}3H_2O$ (1), where $H_3L$ is tris {2-(4-imidazolyl)methyliminoethyl} amine (imtren), has been prepared by reacting manganese(II) perchlorate hexahydrate with the imtren ligand in methanol. X-ray crystallographic study revealed that the imtren ligand hexadentately binds to Mn(II) ion through the three Schiff-base imine N atoms and three imidazole N atoms with a distorted octahedral geometry, and the apical tertiary amine N atom of the ligand pseudo-coordinates to Mn(II), forming overall a pseudo-seven coordination environment. The hydrogen-bonds between imidazole and imidazolate of $[Mn(II)H_{1.5}L]^{0.5+}$ complex ions are extended to build a 2D puckered network with trigonal voids. $[Mn(II)H_3L]^{2+}$ complex ions constitutes another extended 2D puckered layer without hydrogen bonds. Two layers are wedged each other to constitute overall stack of the crystal. Peroxidase activity of complex 1 was examined by observing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) with hydrogen peroxide in the presence of complex 1. Generation of $ABTS^{+{\cdot}}$ was observed by UV-vis and EPR spectroscopies, indicating that the complex 1, a fully-coordinated mononuclear Mn(II) complex with nitrogen-only ligand, has a heme-independent peroxidase activity.