• Title/Summary/Keyword: Imaging system

Search Result 3,393, Processing Time 0.038 seconds

Coherence Gated Three-dimensional Imaging System using Organic Photorefractive Holography

  • Hwang, Ui-Jung;Choi, Jongwan;Kim, Chuntae;Kim, Won-Guen;Oh, Jin-Woo;Kim, Nakjoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.938-940
    • /
    • 2014
  • This paper discusses a coherence-gated three-dimensional imaging system based on photorefractive holography, which was applied to imaging through turbid media with a view to developing biomedical instrumentation. A rapid response photorefractive device doped with 2,4,7-trinitro-9-fluorenylidene malononitrile was used to generate the hologram grating. The estimated depth resolution was $20{\mu}m$, which corresponds to the coherence length of the light source. In this coherence imaging system, tomographic imaging of a 3-dimensional object composed of a $50{\mu}m$ thick cylindrical layer was achieved. The proposed coherence imaging system using an organic photorefractive material can be used as an optical tomography system for biological applications.

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

Design and Experimental Demonstration of Coaxially Folded All-reflective Imaging System

  • Xiong, Yupeng;Dai, Yifan;Chen, Shanyong;Tie, Guipeng
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.227-235
    • /
    • 2019
  • With slimmer, lighter and all-reflective imaging systems in high demand for consumer and military applications, coaxially folded optical image systems are widely considered because they can extend focal length and reduce track length. Most of these systems consist of multiple surfaces, and these surfaces are machined on one element or grouping processing on two elements. In this paper, we report and first experimentally demonstrate an all-aluminum all-reflective optical system which consists of two optical elements, with two high order aspherical surfaces in each element. The coaxially folded system is designed with Seidel aberration theory and advanced optimization with Zemax. The system is made of all-aluminum material processing by single point diamond turning (SPDT). On this basis, we completed the system integration and performed an imaging experiment. The final system has the advantages of short track length and long focal length and broad application prospects in the micro-unmanned aerial vehicle field.

Studies on the millimeter-wave Passive Imaging System III (밀리미터파 수동 이미정 시스템 연구 III)

  • Jung, Min-Kyoo;Chae, Yeon-Sik;Kim, Soon-Koo;Yoo, Jin-Seob;Koji, Mizuno;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.111-116
    • /
    • 2007
  • We have developed a passive millimeter wave (PMMW) imaging system with two-dimensional imaging arrays. For the imaging system we achieved single-substrate imaging-array element which include all necessary component such as Fermi tapered slot antenna (TSA), a balun, LNA's and a detector circuit on it. Two-dimensional arrays for real-time imaging at the 35 GHz band are currently under development. We will be able to make an advanced PMMW image system based on our system with the $2\times2$ imaging array in the near future.

A study on stereo imaging system for remote handling (원격조작을 위한 입체영상 시스템 연구)

  • 이용범;김웅기;박순용;김승호;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.821-824
    • /
    • 1993
  • In hazardous conditions, where entry of human operators is restricted, such as high radiation regions in nuclear facilities, a lot of remote inspections and remote handling tasks must be performed. In this study, the stereo imaging system has been developed and the remote handling technique, has been studied to enhance the efficiency of tele-operation. The nozzle dam handling robot is one of the most important robots applied to nuclear facility. The robot will be equipped with the developed stereo imaging system. The stereo imaging system will outstandingly improve the tele installing/removal tasks for nozzle dam.

  • PDF

Fast Burt Imaging (고속 Burst 영상법 - pulse sequence 중심으로)

  • 강호경;노용만
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • MRI imaging provides many benefits such as noninvasive, 3-dimensional imaging capabilities. But it has relatively serious drawback that is the long data collection time, compared with other imaging modality. Many studies have been performed for fast MR imaging. But EPI and SEPI (4-6) are required to expensive hardware. In this paper, we introduce to Burst imaging technique. It can reduce imaging time by use of a mulitple RF excitation technique. Further it is easily implemented to the normal MRI system. But a pixel profile in the conventional burst sequence is so poor that excited area by burst sequence is a small portion of a pixel. This causes poor signal to noise ratio in burst image. therefore frequency sweeping of RF pulse for burst imaging sequence is proposed to improve pixel profile. A burst pulse train is shaped by liner or nonlinear frequency sweeping function so that all the spins within a pixel are excited, thereby improving the signal to noise ratio. It also shows that the pixel profiles are dependent on how frequency sweep is made. Computer simulations with Bloch equation and experimental results obtained using a 1.0 T NMR imaging system are presented.

  • PDF

Visual Servoing System Based on Space Variant Imaging for Rehabilitation Robots (공간 변화 영상을 이용한 재활로봇의 비쥬얼 서보잉 시스템에 관한 연구)

  • 송원경;이희영;변증남
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.763-768
    • /
    • 1999
  • The space variant imaging system which mimics the human beings visual system has some merits such as wide field-of-view, the low computational cost and the high accuracy in matching of correspondence points of stereo images. In this presentation, a visual servoing system based on the space variant imaging technique is proposed for the control of the rehabilitation robot arm. The position information of an object obtained by space variant imaging techniques is used for the visual servoing. According to the empirical data, the degree of correlation extracted by the space variant imaging technique is more accurate than that of the space invariant imaging technique.

  • PDF

HIGH QUALITY $^1$H SPECTROSCOPY ON 3.0T MRI

  • Kim, Tae-Yong;Kim, S. Choi;Lee, Heung-Kyu;Park, Jeong-Il;Choe, Bo-Young;Suh, Tae-Suk;Lee, Hyoung-Koo;Shinn, Kyung-Sub
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 1999.11a
    • /
    • pp.172-173
    • /
    • 1999
  • PDF

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U.;Han, Jae-Ho;Liu, Xuan;Zhang, Kang
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

Image Reconstruction Based on Deep Learning for the SPIDER Optical Interferometric System

  • Sun, Yan;Liu, Chunling;Ma, Hongliu;Zhang, Wang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.260-269
    • /
    • 2022
  • Segmented planar imaging detector for electro-optical reconnaissance (SPIDER) is an emerging technology for optical imaging. However, this novel detection approach is faced with degraded imaging quality. In this study, a 6 × 6 planar waveguide is used after each lenslet to expand the field of view. The imaging principles of field-plane waveguide structures are described in detail. The local multiple-sampling simulation mode is adopted to process the simulation of the improved imaging system. A novel image-reconstruction algorithm based on deep learning is proposed, which can effectively address the defects in imaging quality that arise during image reconstruction. The proposed algorithm is compared to a conventional algorithm to verify its better reconstruction results. The comparison of different scenarios confirms the suitability of the algorithm to the system in this paper.