• Title/Summary/Keyword: Imaging response assessment

Search Result 64, Processing Time 0.027 seconds

Pseudoprogression and Pseudoresponse in the Management of High-Grade Glioma : Optimal Decision Timing According to the Response Assessment of the Neuro-Oncology Working Group

  • Chang, Ji Hyun;Kim, Chae-Yong;Choi, Byung Se;Kim, Yu Jung;Kim, Jae Sung;Kim, In Ah
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.1
    • /
    • pp.5-11
    • /
    • 2014
  • Objective : We evaluated pseudoprogression (PsPD) following radiation therapy combined with concurrent temozolomide (TMZ), and we assessed pseudoresponse following anti-angiogenic therapy for patients with recurrent disease using the Response Assessment of the Neuro-Oncology Working Group. Methods : Patients who were pathologically confirmed as having high-grade glioma received radiotherapy with concurrent TMZ followed by adjuvant TMZ. Bevacizumab (Avastin) with CPT-11 were used as a salvage option for cases of radiologic progression. Magnetic resonance imaging (MRI) was routinely performed 1 month after concurrent radiochemotherapy (CRT) and every 3 months thereafter. For cases treated with the bevacizumab-containing regimen for progressive disease, MRI was performed every 2 months. Results : Of 55 patients, 21 (38%) showed radiologic progression within 4 weeks after CRT. Of these patients, 16 (29%) showed progression at second post-CRT MRI (etPD) and five (9%) showed improvement (PsPD). Seven of thirty-four initially non-progressed patients showed progression at the second post-CRT MRI (ltPD). No difference in survival was observed between the etPD and ltPD groups (p=0.595). Five (50%) of ten patients showed a radiological response after salvage bevacizumab therapy. Four of those patients exhibited rapid progression immediately after discontinuation of the drug (drug holiday). Conclusion : Twelve weeks following treatment could be the optimal timing to determine PsPD or true progression. MRI with gadolinium enhancement alone is not sufficient to characterize tumor response or growth. Clinical correlation with adequate follow-up duration and histopathologic validation may be helpful in discriminating PsPD from true progression.

Usefulness of Arterial Subtraction in Applying Liver Imaging Reporting and Data System (LI-RADS) Treatment Response Algorithm to Gadoxetic Acid-Enhanced MRI

  • Seo Yeon Youn;Dong Hwan Kim;Joon-Il Choi;Moon Hyung Choi;Bohyun Kim;Yu Ri Shin;Soon Nam Oh;Sung Eun Rha
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1289-1299
    • /
    • 2021
  • Objective: We aimed to evaluate the usefulness of arterial subtraction images for predicting the viability of hepatocellular carcinoma (HCC) after locoregional therapy (LRT) using gadoxetic acid-enhanced MRI and the Liver Imaging Reporting and Data System treatment response (LR-TR) algorithm. Materials and Methods: This study included 90 patients (mean age ± standard deviation, 57 ± 9 years) who underwent liver transplantation or resection after LRT and had 73 viable and 32 nonviable HCCs. All patients underwent gadoxetic acid-enhanced MRI before surgery. Two radiologists assessed the presence of LR-TR features, including arterial phase hyperenhancement (APHE) and LR-TR categories (viable, nonviable, or equivocal), using ordinary arterial-phase and arterial subtraction images. The reference standard for tumor viability was surgical pathology. The sensitivity of APHE for diagnosing viable HCC was compared between ordinary arterial-phase and arterial subtraction images. The sensitivity and specificity of the LR-TR algorithm for diagnosing viable HCC was compared between the use of ordinary arterial-phase and the use of arterial subtraction images. Subgroup analysis was performed on lesions treated with transarterial chemoembolization (TACE) only. Results: The sensitivity of APHE for viable HCCs was higher for arterial subtraction images than ordinary arterial-phase images (71.2% vs. 47.9%; p < 0.001). LR-TR viable category with the use of arterial subtraction images compared with ordinary arterial-phase images showed a significant increase in sensitivity (76.7% [56/73] vs. 63.0% [46/73]; p = 0.002) without significant decrease in specificity (90.6% [29/32] vs. 93.8% [30/32]; p > 0.999). In a subgroup of 63 lesions treated with TACE only, the use of arterial subtraction images showed a significant increase in sensitivity (81.4% [35/43] vs. 67.4% [29/43]; p = 0.031) without significant decrease in specificity (85.0% [17/20] vs. 90.0% [18/20]; p > 0.999). Conclusion: Use of arterial subtraction images compared with ordinary arterial-phase images improved the sensitivity while maintaining specificity for diagnosing viable HCC after LRT using gadoxetic acid-enhanced MRI and the LR-TR algorithm.

Current advances in detection of abnormal egg: a review

  • Jun-Hwi, So;Sung Yong, Joe;Seon Ho, Hwang;Soon Jung, Hong;Seung Hyun, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.813-829
    • /
    • 2022
  • Internal and external defects of eggs should be detected to prevent cross-contamination of intact eggs by abnormal eggs during storage. Emerging detection technologies for abnormal eggs were introduced as an alternative to human inspection. The advanced technologies could rapidly detect abnormal eggs. Abnormal egg detection technologies using acoustic response, machine vision, and spectroscopy have been commercialized in the poultry industry. Non-destructive egg quality assessment methods meanwhile could preserve the value of eggs and improve detection efficiency. In order to improve detection efficiency, it is essential to select a proper algorithm for classifying the types of abnormal eggs. This review deals with the performance of the detection technologies for various types of abnormal eggs in recently published resources. In addition, the discriminant methods and detection algorithms of abnormal eggs reported in the published literature were investigated. Although the majority of the studies were conducted on a laboratory scale, the developed detection technologies for internal and external defects in eggs were technically feasible to obtain the excellent detection accuracy. To apply the developed detection technologies to the poultry industry, it is necessary to achieve the detection rates required from the industry.

Clinical Application of $^{18}F-FDG$ PET in Small Cell Lung Cancer (소세포폐암에저의 $^{18}F-FDG$ PET의 임상 이용)

  • Choi, Joon-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.29-31
    • /
    • 2008
  • This review focuses on the clinical use of $^{18}F-FDG$ PET in small cell lung cancer. For initial staging of small cell lung cancer, $^{18}F-FDG$ PET appears to be better than conventional staging methods. $^{18}F-FDG$ PET seems to be potentially useful for detecting recurrence, restaging and therapy response assessment in small cell lung cancer. However, due to small number of literatures, the role of $^{18}F-FDG$ PET in small cell lung cancer requires further investigations.

Dynamic Response Assessment of Space Use Telescope (우주용 광학구조체의 진동응답 평가)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.87-93
    • /
    • 2015
  • The dynamic responses of a telescope loaded on an STSAT-3 satellite were analyzed, and environmental tests were conducted to verify the reliability of the design. The space use telescope COMIS (compact imaging spectrometer) is a major payload of the STSAT-3 launched on November 21, 2013. Vibration responses such as the acceleration, displacement, and velocity with respect to random vibration and shock impulse inputs were obtained based on theoretical fundamentals in conjunction with finite element analysis. The main focus of this study was on developing technology for accurate and/or favorable modeling and analysis of the structure and fitting the results to that of experiments. Cutting-edge technology for manipulating the vibrations of a space use telescope is suggested.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

  • Nagi, Ravleen;Aravinda, Konidena;Rakesh, N;Gupta, Rajesh;Pal, Ajay;Mann, Amrit Kaur
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2020
  • Intelligent systems(i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.

Long-Term Follow-Up Result of Hydroxyurea Chemotherapy for Recurrent Meningiomas

  • Kim, Min-Su;Yu, Dong-Woo;Jung, Young-Jin;Kim, Sang Woo;Chang, Chul-Hoon;Kim, Oh-Lyong
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.517-522
    • /
    • 2012
  • Objective : Meningiomas represent 18-20% of all intracranial tumors and have a 20-50% 10-year recurrence rate, despite aggressive surgery and irradiation. Hydroxyurea, an inhibitor of ribonucleotide reductase, is known to inhibit meningioma cells by induction of apoptosis. We report the long-term follow-up result of hydroxyurea therapy in the patients with recurrent meningiomas. Methods : Thirteen patients with recurrent WHO grade I or II meningioma were treated with hydroxyurea (1000 $mg/m^2/day$ orally divided twice per day) from June 1998 to February 2012. Nine female and 4 male, ranging in age from 32 to 83 years (median age 61.7 years), were included. Follow-up assessment included physical examination, computed tomography, and magnetic resonance imaging (MRI). Standard neuro-oncological response criteria (Macdonald criteria) were used to evaluate the follow-up MRI scans. The treatment was continued until there was objective disease progression or onset of unmanageable toxicity. Results : Ten of the 13 patients (76.9%) showed stable disease after treatment, with time to progression ranging from 8 to 128 months (median 72.4 months; 6 patients still accruing time). However, there was no complete response or partial response in any patients. Three patients had progressive disease after 88, 89, 36 months, respectively. There was no severe (Grade III-IV) blood systemic disorders and no episodes of non-hematological side effects. Conclusion : This study showed that hydroxyurea is a modestly active agent against recurrent meningiomas and can induce long-term stabilization of disease in some patients. We think that hydroxyurea treatment is well tolerated and convenient, and could be considered as an alternative treatment option in patients with recurrent meningiomas prior to reoperation or radiotherapy.

A Study on Quality Assurance(QA) Guideline for Diagnostic Monitor (판독용 모니터 정도관리 항목 및 시행기준안 개발 연구)

  • Son, Gi-Gyeong;Sung, Dong-Wook;Jung, Hae-Jo;Jeong, Jae-Ho;Kang, Hee-Doo;Shin, Jin-Ho;Lee, Sun-Geun;Kim, Yong-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • PACS has been run at the Kyung Hee University Medical Center(KHMC) since 2001, and the installation and operation of PACS have contributed to automation and quantification of KHMC's medical environment During these five years our greatest concern is how to make our own guiding principle of diagnostic monitor QA which is adapted to international standards. In accordance with the terms of 'KHMC QA Guideline', 'AAPM TG18', 'SMPTE RP133', 'DICOM Part14', 'DIN V 6868-57', 'JESRA X-0093', 'JIS Z4752-2-5' and 'KCARE', concern about quality assurance of medical images are on the increase. With the investigation of acceptance testing and quality control of international standards for medical display devices, and data collection and analysis for recommended guideline, it is reported that acceptance testing(quality control), including geometrical distortion, display reflection, luminance response, luminance uniformity, display resolution, display noise, veiling glare and color chromaticity being adequate and effective to domestic hospital environments for medical display devices and assessment methods according to each performance. Accordingly, KHMC classified the checkpoint items by period, at the time of monitor setting, monthly, quarterly, half-yearly and annually. Periodic classification of checkpoint items for monitor QA makes a good guideline for image QA/QC and useful guideline for persistent good quality of monitor.

  • PDF

Imaging of Tumor Proliferation Using Iodine-131-Iodomethyluridine (Iodine-131-Iodomethyluridine을 이용한 종양세포증식의 영상화에 관한 실험적 연구)

  • Min Kyung-Yoon;Kim, Chang-Guhn;Kim, Hyun-Jeong;Lim, Hyung-Guhn;Rho, Ji-Young;Juhng Seon-Kwan;Won Jong-Jin;Yang, David J.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.344-350
    • /
    • 1996
  • Purpose : Noninvasive imaging of tumor cell proliferation could be helpful in the evaluation of tumor growth potential and could provide an early assessment of treatment response. Radiolabeled thymidine, uridine and adenosine have been used to evaluate tumor cell proliferation. These nucleoside analogs are incorporated into DNA during proliferation. Iodine-131-Iodomethyluridine, an analog of Iodine-131-Iododeoxyuridine, is also involved in DNA/RNA synthesis. The purpose of this study was to develop Iodine-131-Iodomethylurdine and image tumor proliferation using Iodine-131-Iodomethyluridine. Materials and Methods : Radiosynthesis of Iodine-131-5-Iodo-2'-O-methyluridine (Iodine-131-Iodomethyluridine) was prepared from 10 mg of 2'-O-methyluridine(Sigma chemical Co., St. Louis, Missouri) and 2.1 mCi(SP. 10Ci/mg) of Iodine-131-labeled sodium iodide in $100{\mu}l$ of water using iodogen reaction. Female Fischer 344 rats were inoculated in the thigh area with breast tumor cells(13765 NF, $10^5$ cells/rat S.C.). After 14 days, the Iodine-131-Iodomethyluridine $10{\mu}Ci$ was injected to three groups of rats(3/group). The percent of injected dose per gram of tissue weight was determined at 0.5-hours, 2-hours, 4-hours, and 24-hours respectively. Tumor bearing rats after receiving Iodine-131-Iodomethyluridine($50{\mu}Ci$ IV) were euthanized at 2 hours after injection. Autoradiography was done using freeze-dried $50{\mu}m$ coronal section. After injection of Iodine-131- Iodomethyluridine ($10{\mu}Ci$/rat, IV) in three breast tumor-bearing rats, planar scintigraphy was taken at 45 minutes, 90 minutes and 24 hours. Results : Iodine-131-Iodomethyluridine was conveniently synthesized using iodogen reaction. The biodistribution showed fast blood clearance and the tumor-to-tissue uptake ratios showed that optimal imaging time was at 2 hours postinjection. Autoradiogram and planar scintigram indicated that tumor could be well visualized. Conclusion : The findings suggest that Iodine-131-Iodomethyluridine, a new radio-iodinated nucleoside, has potential use for evaluation of active regions of tumor growth.

  • PDF