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Abstract
Internal and external defects of eggs should be detected to prevent cross-contamination of 
intact eggs by abnormal eggs during storage. Emerging detection technologies for abnormal 
eggs were introduced as an alternative to human inspection. The advanced technologies 
could rapidly detect abnormal eggs. Abnormal egg detection technologies using acoustic re-
sponse, machine vision, and spectroscopy have been commercialized in the poultry industry. 
Non-destructive egg quality assessment methods meanwhile could preserve the value of 
eggs and improve detection efficiency. In order to improve detection efficiency, it is essential 
to select a proper algorithm for classifying the types of abnormal eggs. This review deals with 
the performance of the detection technologies for various types of abnormal eggs in recently 
published resources. In addition, the discriminant methods and detection algorithms of abnor-
mal eggs reported in the published literature were investigated. Although the majority of the 
studies were conducted on a laboratory scale, the developed detection technologies for inter-
nal and external defects in eggs were technically feasible to obtain the excellent detection ac-
curacy. To apply the developed detection technologies to the poultry industry, it is necessary 
to achieve the detection rates required from the industry.
Keywords: Abnormal egg detection, Machine vision, Spectroscopy, Acoustic response, Modi-
 fied pressure, Hyperspectral imaging

INTRODUCTION
Eggs are fragile and impossible to clean inside and external and internal defects readily occur [1]. 
Defective eggs are typically classified as bloody eggs, cracked eggs, and eggs with dirty shells. Dirt on 
the eggshell can be removed by washing. However, cracked eggs that cannot be restored or foreign 
objects inside eggs that cannot be washed should be discarded immediately. A defective egg can pose 
a risk of cross-contamination during storage [2]. In the past, eggs were inspected by skilled workers to 
remove defective eggs in advance [3]. This inefficient and subjective method can result in distribution of 
abnormal eggs to consumers. Conventional egg visual inspection methods are not suitable for detecting 
abnormal eggs and cracks. Eggs are one of the most widely consumed agricultural products in the 
world [4]. Emerging technologies to replace conventional egg inspection methods are needed to ensure 
safe eggs are distributed to consumers.
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New abnormal egg detection technologies have been developed to replace the conventional visual 
inspection method [5]. Advanced technologies can detect abnormal eggs rapidly and accurately. 
Egg detectors have been systematized into egg sorting systems and are essential in the global 
egg industry. The global egg sorting system market is dominated by Moba (Netherlands), Nabel 
( Japan), and Kyowa ( Japan). The sorting systems can be equipped with crack, dirt, and abnormal 
egg detectors. All crack detectors are acoustically analyzed. Abnormal eggs are detected using 
spectroscopy, and dirt is detected using a camera [6–8]. Abnormal egg detection systems developed 
by each company have excellent performance and are being used all over the world. The detection 
technologies and processing speeds of each manufacturer’s egg detector system are summarized in 
Table 1.

Studies to develop abnormal egg detection technology using a modified pressure technology 
[9–12] and hyperspectral imaging technology [13–16] have also been conducted in addition to the 
currently commercialized technology. All techniques for detecting defective eggs are non-destructive 
and require a defective egg identification algorithm. Non-destructive testing methods are important 
because if the shell is destroyed to inspect the inside of an egg, the egg is no longer valuable [17]. In 
addition, the accuracy of the algorithm along with the performance of the technology can improve 
the detection accuracy of abnormal eggs [18]. Among the numerous statistical-based data analysis 
models and machine learning models, it is important to use the right model. Currently, studies on 
performance verification of various learning models are being conducted to develop an optimized 
egg detection algorithm [15,19,20]. 

This paper was aimed to provide basic concepts of the currently developed inspection 
technologies for internal and external defects of eggs and to investigate the performance of the 
developed models to identify eggs in each technique.

DETECTION TECHNOLOGIES FOR EXTERNAL DEFECTS 
OF EGGS
Machine vision technology
Machine vision systems (MVSs), advanced technology that integrates mechanical, electronic, 
optical, and software systems, have been widely employed in a variety of commercial industries to 
identify defects of commercial products, as well as to monitor and control continuous processing 
[5,21]. Currently, MVSs have been introduced to various processes for agricultural products such 
as grading and sorting of fresh produces, crop monitoring, and internal quality (e.g. soluble solid 
content, moisture content, internal defects) and safety inspection [22]. In addition, the most 
extensively used method for inspecting external defects of eggs such as dirt and cracks on eggshells 
is a MVS system that integrates a lighting system and software algorithms as an alternative to 
human inspection [1,23]. Since light can penetrate the eggshell and the transmitted light can 
highlight the singularities in the eggshell, the images of the singularities can be acquired by a 
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Table 1. Egg detector specification of the manufacturer

Manufacturer
Crack Abnormal Dirty

Detection
method

Capacity
(egg / hour) Method Capacity Method Capacity

(egg / hour)
Kyowa Acoustic 38,000 Spectroscopy 38,000 Machine vision 38,000

Moba Acoustic / 
machine vision

20,000–254,200 Spectroscopy 20,000–254,200 Machine vision 20,000–254,200

Nabel Acoustic 40,000–120,000 Spectroscopy 40,000–120,000 Machine vision 40,000–120,000
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MVS [24]. The cracked egg detection system using MVS consists of roller conveyor for egg 
transportation, industrial camera, light box and egg candle (light source) as indicated in Fig. 1 of 
the research done by Guanjun et al. [24]. The roller conveyor was employed to transfer and rotate 
eggs so that the images of entire surface of eggs could be acquired by the camera. The egg candle 
was used to irradiate light to the eggs, and the light box could prevent occurring light noise from 
the experimental environment. The defects on the eggshell finally could be determined through 
further imaging processing. Egg candling and lighting boxes were effective for the image processing 
to detect external defects of eggs by removing the non-egg background from the image. A MVS 
for detecting external defects of eggs can provide faster and more objective inspection of important 
characteristics of eggs with high accuracy [25]. The effectiveness of MVSs for inspecting external 
defects of eggs has been evaluated by a number of researchers [4].

The eggshell dirt was detected by processing the acquired image from the eggs using a MVS 
including a charge-coupled device (CCD) camera under different illumination conditions [26]. 
A wooden cubic box was fabricated to remove light noise. In order to obtain clear images of eggs, 
halogen lamps were installed on the inside top of the box and yellow and white fluorescent tubular 
lamps were installed on the interior sides of the box. A total of eight lamps were installed inside 
the box. The image processing algorithm was developed using MATLAB 7.6 software. The canny 
edge detection method, one of the edge detection methods, was employed to detect the edges of the 
acquired egg images, and additional image processing functions such as the bwlabel function were 
applied to detect dirt on eggshells. The eggshell dirt was measured by counting the detected dirty 
pixels. The accuracy of the eggshell dirt algorithms was determined by comparison with a skillful 
egg inspector. The accuracy was 85.66% over all egg samples. 

An egg grading system combined with machine vision and artificial intelligence technologies 
was designed and developed by Omid et al. [4]. Similar to the research done by Dehrouyeh et al. 

Fig. 1. A schematic diagram of Line laser diode system based on MVS. Adapted from Mota-Grajales et al. 
[29] with permission of Elsevier. MVS, machine vision systems.
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[26], a cubic box was fabricated to create uniform illuminance. A CCD camera was installed at the 
top of the box, and a halogen lamp was installed at the bottom of the box. An image processing 
algorithm including background removal, resizing, egg pixel counting, and crack pixel identification 
functions was developed to detect cracks in eggshells. In addition, a fuzzy inference system (FIS) for 
grading eggs was designed based on triangular, S-, and Z-shaped fuzzifiers, the Mamdani inference 
engine, and a defuzzifier (center of average defuzzification). The input variables for the FIS were 
cracks, blood, breakage, and size. The fuzzy interval determination and algorithm evaluation were 
conducted with human experts’ judgment. The algorithms for detecting size, cracks, and breakage of 
eggs showed an accuracy range from 93% to 98%, and a sensitivity range from 90.65% to 96.96%, 
respectively. The detection error from the algorithm for detecting sizes of eggs was caused by light 
noise and the adjacency of classification intervals. The overall accuracy of the egg grading fuzzy 
algorithm was 95.4%.

A negative Laplacian of Gaussian (LoG) operator was applied to a MVS to effectively 
detect invisible micro-cracks on eggs [24]. The detection of cracks on eggs using the MVS was 
complicated because of the noise factors (such as image noise and the area of freckles in eggshells). 
Image processing was performed to identify various cracks on eggs. The LoG operator used a 
Gaussian filter convolution, which can smooth the acquired images of eggs and remove small 
noises. The cracks in the acquired egg image were accentuated using the negative LoG operator. 
The sharpness of cracks and the backgrounds of egg images was changed depending on the scale 
of σ. When σ was 0.3, it was the best scale to indicate micro-cracks in the egg image. A hysteresis 
thresholding method was employed to obtain the binary egg image. In addition, the non-crack 
region in the binary egg image was eliminated using an improved local fitting image (LFI) index to 
dark spots. As a result, the accuracy of the developed algorithm for discriminating between cracked 
eggs and intact eggs was 91.3% as compared with human inspection. However, the accuracy was 
obtained only from egg samples without invisible micro-cracks because invisible micro-cracks could 
not be detected by human inspection. 

A convolutional neural network (CNN) and artificial neural network (ANN), which can 
represent complex and complicated relations between input and output data, have been combined 
with MVS to rapidly detect external defects of eggs with superior accuracy [1,27,28]. 

An automatic egg sorting system using a CNN was proposed to detect internal and external 
defects of eggs [1]. The CNN model consisted of the modified VGG 16 structure (pre-trained 
CNNs) including the global average pooling layer to minimize overfitting with a reduction of 
the number of parameters, the dense layer with softmax classifier, batch normalization to retain 
all input variables of the layer, and the dropout layer for preventing overfitting. The rectified linear 
unit (ReLU) function was utilized as the activation function of the convolutional layers. The 
developed CNN model was trained, validated, and tested by using the acquired images from eggs 
with external and internal defects. The efficiency of the CNN model was estimated using a 5-fold 
cross-validation method. In this system, blood spots in eggs were detected as well as cracked eggs. 
The developed model was able to accurately detect all broken eggs and the blood spots in the eggs; 
however, there was a significant difference in appearance between broken and intact eggs. With this 
significant difference, it was possible to accurately detect broken eggs and blood spots in the eggs.

Turkoglu [27] developed a defective white egg detection system using a real-time MVS without 
a light source. The combined CNN and Bidirectional Long-Short-Term-Memory (BiLSTM) 
model was coupled with the detection system to identify dirt, cracks, and blood in eggshells. The 
developed model could segment each egg image from the acquired image containing 10 eggs and 
extract 1,000 features from the fc 1,000 layer for the segmented egg image using a pretrained 
DenNet201 model. The extracted features were fed into the component layers of the model 
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(BiLSTM, ReLU, dropout, fully-connected, Softmax, and classification layer in order) to classify 
the labels (dirt, cracks, and blood) of input egg images. The developed defective egg detection model 
showed excellent performance with an accuracy of 99.17%.

A MVS combined with a CNN model to detect cracked eggs was also developed by Botta et al. 
[28]. The background and the edges of eggs from acquired egg images were removed through image 
processing. In addition, cracks and non-cracks on the egg images were separated and extracted 
using a filtering process. The developed CNN model based on the LeNEt-5 architecture included 
the ReLU function as the activation function, and the Softmax function was applied in the last 
layer of the model. Instead of examining cracks in the entire image, the image patches detected 
as features of cracks were extracted and utilized in the CNN model. After training, validating, 
and testing micro-crack and non-crack image patches, an accuracy of 95.38% was achieved in the 
developed model. The use of image patches was efficacious to improve memory efficiency and 
detection accuracy.

A line laser diode Adafruit with a center wavelength of 650 nm and an ANN were employed 
in a MVS to detect defects in eggshells [29]. The line laser diode used in this system projected 
structured light onto the surface of the egg, and an industrial RGB camera was used to acquire the 
image of the projected egg as shown in Fig. 1 in the paper [29]. The original image of the egg was 
used in conventional MVS, but the scanned laser light image of the egg surface was used in the 
system with a line laser camera. The diode with a wide numerical aperture of 120 ° could project 
light onto the large surface of the egg. The curvature of structured laser light on the egg surface 
was different depending on the presence of external defects in eggs. The acquired images from laser 
light scanning of eggshells were analyzed with the Levenberg-Marquardt ANN backpropagation 
algorithm. A well-smoothed curve was presented in the acquired line scanning image from the 
eggshells without defects. On the other hand, the scanned images obtained from eggshells with 
defects showed morphologically non-uniform curves. Detection accuracy of 97.5% and mean 
square error (MSE) of 2.6 × 10−6 were achieved in thisMVS.

Acoustic response system
The acoustic response system (or acoustic signal analysis) has been extensively studied to detect 
cracks in eggshells [30]. This method measures and analyzes the acoustic response or vibration 
signal generated by slight mechanical impact at several locations on eggshells, which can distinguish 
between cracked and normal eggs [31]. As shown in Fig. 1 of the research done by Wang et al. [32], 
the acoustic response system mainly consists of mechanical impact balls or rods, microphones for 
collecting impact sound, and a digital signal processing (DSP) unit. The excitation ball attracted 
to the annular magnet can vibrate up and down due to the attraction force of the magnet. The 
vibrating ball hits the egg several times, and the acoustic signal generated by repeated slight impacts 
can be collected using a microphone. The acoustic signal is analyzed by three important signal 
process steps (1. Extraction and conversion of acoustic features, 2. Selection of the most relevant 
feature from acoustic features, 3. Recognition of selected feature) to discriminate cracked eggs [32]. 
Although the acoustic response system cannot accurately detect cracked eggs, this system is widely 
applied in the poultry industry because it requires less data to be processed compared to the MVS 
[33]. The performance of the online acoustic response system for the detection of cracked eggs can 
vary depending on the acoustic signal analysis algorithms [34].

Sun et al. [35] evaluated the performance of an online acoustic response system for detecting 
cracked eggs. The analog acoustic signal generated from impacting eggs with a light metallic rod 
was collected by a microphone and an electric circuit was used to amplify and filter the collected 
signal. DSP was then employed to convert the signal into a digital signal. The converted signal was 
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processed using Code Composer Studio (CCS) installed on the computer. The frequency range 
of the signal was from 1,200 to 6,800 Hz. The performance of the online system was enhanced by 
adjusting operation parameters such as the impact point and strength, the speed of the conveyor, 
and the position between impact point and crack direction. The optimal signal was obtained when 
the equatorial part of the egg was impacted by the rod. In addition, the speed of the conveyor and 
impact strength for achieving optimal signal without damage were 2.09 N and 28 cm/s, respectively. 
When the crack direction was perpendicular to the equator of the eggs, it was difficult to detect 
a cracked egg. A significant signal difference between normal and cracked eggs was observed at 
2,900 Hz. The developed online system could indicate the different frequency signals of normal and 
cracked eggs by analyzing the frequency signal range collected through continuous impaction (over 
40 times). As a result, the identification rate of normal and cracked eggs was 100% and 96.11%, 
respectively.

Kertesz et al. [33] artificially created a thin micro-crack on the pointy tips of eggs and measured 
the acoustic signal generated by impacting in the vertical and horizontal directions along the 
equatorial part of the egg. The acoustic signal was processed by a fast Fourier transform (FFT) and 
principal components analysis (PCA). Regardless of the impact direction, the detectable frequency 
signal range was below 3,000 Hz. The signal patterns obtained from normal and cracked eggs were 
significantly different in the frequency range between around 500 and 3,000 Hz. The accuracy of 
discrimination between normal and cracked eggs was 97.9% and a false positive rate of 0.87% was 
achieved. However, this system was not fully developed for application to the poultry industry.

Negative pressure method
Another approach to detect cracks in eggshells is a MVS coupled with a modified pressure method. 
Large cracks in eggshells can be easily detected by human inspection, candling, and MVS; however, 
micro-cracks, also known as hairline cracks, cannot be observed by the aforementioned methods. 
When the air pressure in the chamber containing eggs is suddenly dropped, the micro-cracks in the 
eggshells are instantaneously expanded due to the pressure difference between the air pressure in 
the chamber and the internal pressure of the eggs [9]. The instantaneously expanded micro-cracks 
in the egg can then be captured using a MVS. Even though this method requires supplementary 
devices (i.e. a vacuum pump and a well-sealed chamber equipped with a light source) and a long 
processing time, the detection accuracy is much higher than other detection methods, and can 
replace human inspection in egg processing facilities [10].

Lawrence et al. [9] developed a modified pressure imaging system to detect micro-cracks in 
eggshells. The system comprised a transparent vacuum chamber with a light source, a monochrome 
camera to capture cracks in eggs, and a vacuum pump. The egg images were acquired at atmospheric 
pressure and modified pressure (254 mmHg). Intact eggshells could withstand repeated vacuum 
pressure of 254 mmHg and micro-cracks in eggshells stably expanded below a vacuum pressure of 
137.16 mmHg. Transmitted light through the egg could improve the performance of the MVS to 
detect micro-cracks. The acquired images of eggs at atmospheric pressure and modified pressure 
were compared to detect micro-cracks by using an image processing algorithm. The developed 
system achieved a detection accuracy of 98.8% in identifying all cracked eggs except for the eggs 
with cracks at the pointy tips.

As a continuation of the research done by Jones et al. [10], Yoon et al. [36] improved a modified 
pressure imaging system capable of examining 20 eggs. The system consisted of custom made 
vacuum chamber and pump, automatic rotating device, LED light source, and monochrome camera 
(Fig. 1 in the paper [36]). The custom made vacuum pump was able to instantaneously decrease the 
pressure inside the chamber, finally creating the pressure difference between the internal pressure 
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of egg and the pressure inside chamber. A thick and transparent cubic chamber was designed and 
fabricated to prevent the deflection of the lid of the chamber and image distortion when a sudden 
vacuum condition was generated. A rotating device was installed in the chamber to acquire entire 
surface images of eggs by rotating the eggs about 90° to 120°. LEDs were installed under the 
rotating device. The egg images were acquired at two different pressure conditions (atmospheric 
pressure and modified pressure) in the chamber. The camera could capture the expanded egg surface 
in the short moment of pressure difference. The pressure inside the chamber then was returned to 
atmospheric pressure as the intake air by the vacuum pump returned to the chamber. This system 
was automatically controlled by combining hardware and software architectures. After acquiring 
images of eggs at different pressure conditions, the acquired images were analyzed using an imaging 
processing algorithm including a background mask and median filter function as indicated in the 
Fig. 1 in the paper [36]. To determine the effect of modified pressure on the change in the eggshell 
quality, preliminary tests were performed using eggs with poor shell quality. When modified 
pressure was applied in the chamber, the cracking rate of eggs was 0.03% and the modified pressure 
had little effect on the quality of the eggshell. In this system, the detection accuracy for micro-
cracks in eggs was 99.6% and the false rejection rate was 0.2%. 

Similar to the research done by Yoon et al. [36], the effect of modified pressure on the detection 
of cracked eggs was evaluated by Priyadumkol et al. [12]. The system was operated at a negative 
pressure of 254 mmHg and the rotation degree of the eggs was 120°. Egg surface segmentation, 
eggshell crack segmentation, and crack and dust identification functions were fed into the 
developed image processing algorithm. The accuracy of the developed algorithm for the detection 
of cracked eggs was 94% and the false negative rate was 1.67%.

DETECTION TECHNOLOGIES FOR INTERNAL DEFECTS 
OF EGGS
Machine vision technology
Typical cameras such as CCD and monochrome cameras can only inspect external defects of eggs. 
However, inspection of internal defects of eggs by a MVS equipped with an intensive light source 
that can penetrate the eggs is technically feasible [1]. When the intensive light penetrates intact 
and internally defective eggs, the color of the intact egg images is usually yellow, while bloody spots 
in the defective egg images are displayed in red color [26]. The difference between colors in the 
acquired images can be determined using a simple image processing algorithm. 

Arivazhagan et al. [3] developed a MVS to detect blood in eggs. Similar to earlier studies [37,38], 
a wooden cubic chamber was fabricated to block light noise from the environment, and a halogen 
lamp and digital camera were installed in the chamber. The egg images were acquired using light 
transmitted through the eggs. A software algorithm including color correction, image filtering, 
and bloodstain area extraction functions was developed to detect blood in the eggs. The bloodstain 
area in the egg was represented by pixels with black color, and the other area in the egg image was 
indicated as pixels with white color. Finally, the bloodstain area was estimated by the size of the 
black pixels. The simple MVS with a light source could be used to detect blood in eggs. 

The freshness of eggs was evaluated using a MVS coupled with an ANN [39]. The eggs samples 
were stored for 30 days, and the quality indices of the egg such as the area of the air cell, area index, 
Haugh unit (HU), and the density and pH values for the yolk and albumen were measured at 25℃ 
and relative humidity (RH) of 20%. The measurement interval was two days. After capturing the 
egg images and measuring the weight of the eggs, pH, density, and HU values of the eggs were 
determined using destructive measurements. The egg and background areas from the acquired 
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image were separated using an image processing algorithm, and the feature space (egg weight and 
area index) was extracted. The features were fed into a training neural network consisting of five 
training algorithms such as Levenberg–Marquardt and then evaluated. During storage, the pH 
value of the egg significantly increased with a decrease in the air cell area and area index. The weight 
of the egg was quite stable. The area index was substantially related to the pH and HU of the 
albumin with correlation coefficients of 0.77 and 0.86, respectively. The ANN algorithm developed 
with the area index and weight of eggs as inputs could accurately predict the pH and HU of the 
albumin and showed detection accuracies of 86.6% and 93.3%, respectively.

Harnsoongneon and Jaroensuk [38] proposed a simple egg grade and freshness assessment 
method using machine vision and a load cell sensor. The weight of the egg was measured using 
the load cell, and the volume of the egg was calculated from the length and width determined by 
the edge detection of the acquired images. The weight, length, width, and volume of the eggs were 
measured over a period of 30 days. The density of the eggs was calculated on the basis of the weight 
and volume of the eggs, and the density of the eggs consistently decreased during storage. The 
decrease in the density of eggs due to the evaporation of moisture through the tremendous pores on 
the eggshell surface could be used as egg grading and freshness assessment factors. 

A MVS combined with a dielectric measurement method and an ANN was designed and 
developed to predict egg quality [40]. The dielectric properties of the egg were measured using 
the parallel method in a frequency range between 40 kHz and 20 MHz. The related voltage was 
calculated based on the measured dielectric properties. Egg samples were stored at 20℃ and RH of 
35% for 24 days. HU, yolk index, and yolk/albumen ratio were used as quality indices of the eggs. 
The volume of the eggs was determined by the water displacement method, and the vertical and 
horizontal length values of the eggs were obtained by processing the acquired images. The dielectric 
properties and quality indices of the eggs were measured at 1, 4, 7, 11, 18, and 24 days of storage 
time. The ANN model was developed using a feedforward neural network, backpropagation, and 
Levenberg-Marquardt algorithms. The measured voltage and dimensional characteristics of the 
eggs were utilized as the input of the developed ANN model to predict egg quality indices. The 
properties and quality indices of eggs decreased with an increase in storage time. The developed 
ANN model was able to accurately predict quality indices with R2 and MSE values of 0.99 and 
0.064, respectively. 

Spectroscopy technology
Spectroscopy technology can measure the energy of transmitted wavelength by irradiating the 
subjective material with optic light [41]. Spectroscopy can be classified according to the wavelength 
region used: ultraviolet (UV, 100 to 400 nm), visible light (Vis, 400 to 780 nm), near-Infrared 
(NIR, 780 to 2,500 nm), and mid-Infrared (MIR, 2,500 to 4,000 nm). Spectroscopy can provide a 
novel alternative to conventional destructive methods to measure food quality because of its non-
destructive and rapid manner [42]. Among different types of spectroscopy, NIR spectroscopy has 
been widely employed in the poultry industry to measure the quality of eggs [43,44]. In recent 
years, visible NIR (Vis-NIR) spectroscopy has also been utilized to detect the internal defects of 
eggs [45]. The system for detecting internal defects in eggs using spectroscopy is simply composed 
of a light source that illuminates the egg, a white chamber that blocks external light, and a 
spectroradiometer sensor to acquire only the transmitted light through egg sample as indicated in 
Fig. 1 of the research done by Abdel-Nour et al. [45]. To prevent the eggs from being heated by 
the light source, the light source should be turned on for a short time period required for spectral 
measurements. The Vis-NIR spectral data of the egg is obtained by a spectrodiometer that can 
measure transmittance wavelengths. However, spectral data are an overlapping signal, and it is 
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complicated to identify important signal information. Therefore, in order to extract the practical 
data from spectral data, it is necessary to exploit optimal data processing based on a multivariate 
statistical analysis [46]. 

A freshness assessment of eggs was carried out using NIR spectroscopy and ANN combined 
with a multivariate statistical technique [47]. The reflectance mode of NIR spectroscopy was used 
to obtain NIR spectra of eggs, and the spectra were recorded using a NIR spectrophotometer 
connected with a fiber-optic probe. The spectra were measured at the equatorial part of the egg 
and the wavelength range of the spectra was between 1,000 cm−1 and 4,000 cm−1. Standard normal 
transformation was applied as a preprocessing method of the spectral data to correct the baseline 
offset of the acquired spectra owing to the scattering effects. Effective features were extracted from 
the original spectral data using two types of extracting methods (independent component analysis 
[ICA] and PCA) that could remove overlapping information and reduce the data size. An ANN 
combined with a genetic algorithm (GA) was developed to predict the freshness of the eggs. The 
eggs were stored at 25℃ and RH of 70% for 2 weeks, and the NIR spectrum and HU of the eggs 
were measured daily. The extracted features from the preprocessed NIR data were used as the 
input of the GA-ANN model and then the HU of the eggs was predicted as the output of the 
model. More than half of the extracted spectra features and the measured HU data were used as a 
calibration set to develop the GA-ANN model and the remaining data were used as a validation 
set to evaluate the performance of the model in terms of the root mean square error of prediction 
(RMSEP) and correlation coefficient (R). The identification rates of eggs in the model were 92.4% 
and 91.4% in the calibration and validation sets, respectively. When the ICA method was applied 
to the GA-ANN model, better performance than the GA-ANN model combined with PCA was 
obtained.

A quantitative model based on Vis-NIR spectra of a single variety (reference variety) of eggs was 
applied to another variety (comparison variety) of eggs [17]. The model was developed by changing 
the order of reference variety. White Leghorn egg and Bantam eggs were used in this study and 
the two varieties of eggs were stored for three weeks at 30℃ and RH of 60%. Albumen pH 
(freshness factor) and the spectral data of both egg varieties were measured every two days during 
the storage. The spectral data were acquired in a Vis-NIR wavelength range from 340 nm to 1,030 
nm. The outliers of the spectrum were eliminated using the Mahalanobis distance combined with 
PCA. Savitzky-Golay (SG), multiplicative scattering correction (MSC), SNV, and 1st and 2nd 
SG derivatives were used for preprocessing spectral data prior to the development of the model. 
Partial least square regression (PLS-R), which can extract important information from the acquired 
spectral data, was employed to develop the model for predicting the pH of albumen. In addition, 
calibration updating and transfer methods such as global updating, direct standardization (DS), and 
slope/bias correction (SBC) algorithms were utilized to apply the developed model based on one 
variety of eggs to another variety of eggs. The pH values of both egg varieties increased during the 
storage time. The spectral data of both egg varieties were significantly different in the wavelength 
range between 600 nm and 650 nm. The developed model with the MSC and SBC methods 
for both egg varieties showed good performance to predict the pH of the albumin on the basis 
of processed spectral data in terms of the correlation coefficient of prediction (rp) and RMSEP. 
Furthermore, when the model was developed with the Bantam egg variety as the reference variety, 
better prediction results than the model with the White Leghorn egg variety were achieved due to 
the brown color, chemical properties, and complex structure of the Bantam egg.

Simple and low-cost portable spectrometers have been also employed to predict the storage 
time and freshness of eggs [19,48]. An egg storage time prediction model was developed using 
NIR spectral data of eggs obtained from a portable spectrometer [48]. The portable spectrometer 
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connected to a smartphone could easily collect the spectral data of eggs in a wavelength range 
between 740 nm and 1,070 nm. The spectral data of eggs were measured every 24 h for 21 days at 
the blunt end of the eggs stored at about 23℃. The changes in spectral data were evident between 
0–7 days and 14–21days. Six pre-processing techniques (SG, Beer-Lambert law, standard normal 
variate [SNV], Multiplicative scatter correction [MSC], and first and second spectral derivative 
[FSD, SSD]) and two calibration algorithms (partial least squares [PLS] and ANN) were deployed 
to develop the prediction model. The informative wavelength was selected for the prediction model 
using the best combination of preprocessing technique and calibration algorithm. R2 and root 
mean square error of cross-validation (RMSECV) values were used as evaluation indicators for 
the model. The 660 collected spectral raw data were divided into nine fold of calibration (70%)/ 
validation (20%), and one fold of test (10%) sets using 10-fold cross validation to evaluate the 
developed prediction model. The optimal combination of prediction model was SG and ANN, 
which obtained a R2 of above 0.8. The optimization-process for the parameters of the SG and 
ANN combination was performed using training and validation sets. The optimized model was 
examined using test sets, and the obtained R2 and RMSEC values were 0.873 and 1.97 days, 
respectively. Although the R2 value was lower than 0.9, the RMSECV value was in a reasonable 
range for predicting egg storage time. 

A portable and low-cost NIR spectrometer was used to make real time prediction of egg 
freshness depending on the HU [19]. Two egg sample groups were stored for different storage 
periods (maximum 21 days) at 20℃ and 30℃ and the range of RH was between 50% and 65%. 
At the end of the storage period, the spectral data of eggs in the wavelength range between 900 
nm and 1,700 nm were measured at the top (R3), middle (R2), and bottom (R1) parts of the eggs. 
After measuring the HU value of the eggs, the freshness grade of the eggs was calculated according 
to the HU value and the grade was divided into three classes (AA, A, and B). SNV was used to 
correct the light scattering effects of raw spectra of eggs, and the random noise and changes in the 
baseline of the spectra were corrected using the 1st and 2nd SG derivative preprocessing methods. 
PCA was performed using two spectral groups (full spectra and selected spectra) in order to analyze 
the differences in the spectral data depending on the freshness grades. PLS-R and support vector 
machine regression (SVM-R) methods were adopted to develop the HU prediction model using 
reflectance values of the NIR spectra as input variables. PLS discriminant analysis (PLS-DA) and 
SVM classification (SVM-C) were deployed to classify eggs depending upon the freshness. PLS-
DA and SVM-C methods were tested using two classifications: (1) AA, A, and B grade eggs and 
(2) fresh (AA and A) and stale (B) eggs. Among the performance indicators of the regression 
model, the most important indicators affecting the accuracy of the prediction model were the 
relative error (RMSEP / average of the prediction data set) and the ratio of standard deviation 
(RPD, defined as the standard deviation of the prediction data set / RMSEP). The SVM-R model 
using the average spectral values measured at three positions (mean R1 + R2 + R3) was the most 
effective for predicting the HU of eggs. In this case, the wavelength range was between 1,300 
nm and 1,690 nm, and the relative error and RPD were 7.32% and 2.56, respectively. The PLS-R 
model using average spectral values measured at R1 and R2 also provided good HU prediction. The 
accuracies of the PLS-DA model for classifying fresh and old eggs were 85% and 87%, respectively. 

A simple Vis/NIR spectroscopy system can also be used to detect bloody defects inside eggs 
[20,49]. A Vis/NIR spectroscopic system consisting of a handheld spectrometer, optical fiber, 
and a halogen lamp was applied to detect blood spots inside brown eggs [20]. Bloody eggs were 
fabricated by injecting a certain amount of blood into an artificially created hole slightly below the 
center of the upper part. The injected blood volumes were 0.01, 0.04, 0.07, and 0.1 mL. The angle 
of two light sources for irradiating eggs was set to 30°, and the distance between the egg and the 
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light source was 100 mm to prevent damage to the eggs by heat. The spectral data of the eggs were 
collected from 471 nm to 1,154 nm. Smoothing, MSC, SNV, and regularization methods were 
employed for preprocessing the spectral data, and the PLS-DA model was developed to detect 
bloody spots inside eggs. The performance of the model was expressed as R2 and the standard error 
of the prediction set (SEP). Although the optimal data preprocessing method differed depending 
on the blood volume in the eggs, the MSC model was the most suitable for detecting bloody spots 
inside eggs regardless of the blood volumes. The MSC model accuracy increased from 86.5% to 
97.9% with an increase in blood volumes.

Hyper-spectral imaging
Hyperspectral imaging (HSI) technology integrates conventional imaging and spectroscopy 
techniques to simultaneously acquire spatial and spectral data for each pixel of a subject in multiple 
spectral bands [50]. A hyperspectral image consists of two spatial dimensions (X, Y) and one 
spectral dimension (λ). The shapes of spectral curves of the objects obtained from HSI can be 
significantly affected by the chemical composition or intrinsic physical properties of objects [51]. 
Therefore, the hyperspectral image of an object can provide chemical information that cannot 
be obtained with a typical MVS [52]. HSI is one of the emerging non-destructive and rapid 
technologies for the inspection of agricultural products [53]. Choosing an appropriate wavelength 
from the full spectra of an object can reduce the configuration and cost of the HSI system, finally 
increasing the efficiency of the system [54]. 

HSI techniques are useful to detect stale eggs by predicting the freshness of eggs [13–15]. 
Hyperspectral imaging was used to examine internal quality (freshness, air bubbles, and scattered 
yolks) of eggs [13]. Hyperspectral images of eggs were acquired using a pushbroom HSI system 
consisting of a CCD camera, an imaging spectrometer, and an illuminator. The acquired spectral 
image of an egg consisted of 440 images extracted in the spectral range from 380 nm to 1,010 
nm. In order to extract spectral information (i.e. image characteristics, the selection of an effective 
wavelength, prediction, and classification), image calibration was carried out using percent 
transmission to the acquired spectral image. The region of interest (ROI) was selected from the 
calibrated image, and the successive projection algorithm (SPA) was deployed to extract the 
appropriate spectral features and wavelength for the egg freshness assessment. The mean ROI 
was utilized as an average transmission value. PCA was conducted to reduce the dimensionality 
of the calibrated image and to extract the optimal characteristic images. In addition, the gray 
level co-occurrence matrix (GLCM) was employed to extract the optimal texture variables from 
the characteristic pictures that were used to detect the internal bubbles. Imaging processing was 
developed to detect the scattered yolk in the eggs. The scattered yolk was determined according 
to changes in its morphological characteristics in the processed image. The calibration model 
was developed with PLS-R and SVM-R to evaluate egg freshness using a full spectral range. In 
addition, SVM-C was used to distinguish the eggs with internal bubbles and scattered yolks. The 
performance of the egg freshness assessment model was expressed as RPD, root mean square 
error of calibration (RMSEC), RMSEP, and the coefficient of determination of calibration (R2

c) 
and prediction (R2

p). The SVM-C model was evaluated by the total accuracy, defined as the ratio 
of correctly classified number of eggs over the total number of eggs within the calibration and 
prediction sets. The egg samples were divided into three sets to detect freshness, bubbles, and 
scattered yolks. Egg set 1 for freshness was stored at 20℃ and RH of 50% for 0, 7, 14, 21, 28, 35, 
and 42 days and HU was measured after hyperspectral image acquisition. Egg sets 2 and 3 were 
artificially damaged by simulated transportation vibration. In all three sample sets, 60% and 40% of 
the eggs were used for calibration and prediction models, respectively. The R2

p and RMSEP values 
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obtained from the PLS-R prediction model were 0.78 and 5.30%, respectively. The values from 
the SVR model using PCA were 0.85 and 4.33%, respectively. This low accuracy was caused by the 
influence of the eggshell pores on the transmission spectral properties. The selected optimal spectral 
wavelengths for SPA were 620, 632, 654, 671, 680, 684, 697, 707, 712, 724, 762, 780, and 796 nm. 
The R2

p, RMSEP, and RPD obtained from the selected optimal wavelengths based SPA-SVR 
model were 0.87, 4.01%, and 2.80, respectively. The freshness of eggs depending on the HU was 
predicted by applying the SPA-SVR model. The detection accuracies of the SVC model for internal 
bubbles and scattered yolks in eggs were 90.0% and 96.3%, respectively. 

Egg freshness was evaluated using the NIR-HSI system with comparison to HU measurement 
[14]. The NIR-HSI system consisted of a CCD camera, an imaging spectrometer, and a tungsten 
halogen lamp. Eggs were stored at room temperature for 21 days, and the spectra data and HU 
of eggs were measured approximately every four days. Data preprocessing and the selection of the 
ROI of hyperspectral images of eggs were performed in a manner similar to the aforementioned 
research. The egg freshness assessment model was developed with PLS-R using the spectral data in 
the range between 900 nm and 1,700 nm. The ROI was cropped at the center of each hyperspectral 
egg image and the average spectra of the ROI were applied to model calibration. Different types of 
data preprocessing methods such as SG smoothing, SG derivative, MSC, and SNV were evaluated 
to determine the optimal conditions for the calibration model and tested through cross-validation. 
The SNV preprocessing method was able to achieve the best results for the prediction of egg 
freshness. 

The optimal conditions of the egg freshness assessment model were investigated by using 
different types of hyperspectral images of eggs [15]. The reflection, scattering, transmission, 
and mixed hyperspectral images of eggs were acquired using a dual hyperspectral camera, and 
the incident angle of the light source to irradiate eggs was increased from 0° (for scattering 
hyperspectral image) to 60° (for mixed hyperspectral image) with an increment of 10°. The egg 
freshness assessment model was developed by applying a variety of data preprocessing methods, 
data extracting methods, and classification models, and the optimal combination of conditions for 
the model was investigated. Brown eggs were used in the experiment, and hyperspectral images 
and HU data of the eggs were collected weekly for four weeks. The developed model with a MSC-
SPA-DAC combination method and scattering hyperspectral image showed the highest accuracy 
of 96.25% for egg freshness assessment. The incident angle of the light source had a significant 
impact on the accuracy of the model. Among four types of hyperspectral images, the scattering 
hyperspectral image was the most suitable to accurately predict the freshness of eggs.

In addition, bloody eggs were detected using the HSI system [16]. Hyperspectral images of intact 
brown eggs and dried brown eggshell fragments were acquired from a spectrum range between 
450 nm and 1,000 nm. The entire area of the egg was used as the ROI from a hyperspectral image 
of an intact egg, while the ROI of shell fragments was extracted manually. Raw spectral data 
were corrected and normalized to minimize the influence of transmitted light intensity caused by 
eggshell thickness. k-nearest neighbor (KNN) and SVM models were compared to develop the 
bloody egg detection model. The KKN model achieved less than 90% accuracy in all variables, 
but SVM achieved better accuracy than KNN in all variables, and input variable 3 achieved 100% 
accuracy.

CONCLUSION
The present review demonstrated the application of a variety of technologies for detecting internal 
and external defects of eggs. Egg quality inspection has been conducted using simple image imaging 
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techniques and spectroscopic analysis methods analyzing complex spectral data. All detection 
technologies for defects of eggs required a discrimination software algorithm. CNN models, which 
contributed greatly to the success of object recognition, have been widely applied to various studies 
on detecting the exterior of eggs using MVSs. In addition, the SVM model, one of the machine 
learning models used for pattern recognition and data classification, has been applied to the internal 
inspection of eggs. As a result, the majority of the detection techniques for defects of eggs achieved 

Table 2. Summary of technologies for detection abnormal eggs

Detection method Target
(Measurement index) Sample egg Prediction algorithm Accuracy References

Machine vision Dirty egg 350 white eggs Image processing algorithm developed in the study 85.7% [26]

Cracked egg 400 white eggs FLI model 94.5% [4]

Cracked egg 150 eggs Negative LoG -LFI model 91.3% [24]

Broken egg 67 white eggs Image pre-processing and CNN model 100.0% [1]

Bloody egg /
cracked egg / dirty egg

400 white eggs SMI-CNN-BiLSTM model 99.2% [27]

Cracked egg 130 white eggs Image pre-processing and CNN model 95.4% [28]

Bloody egg 200 white eggs Image processing algorithm developed in the study ∙ [3]

Stale egg 
(HU and albumen pH)

210 eggs Image processing - LM algorithm 93.3% [39]

Machine vision + 
line laser

Cracked egg 200 brown eggs Image pre-processing and ANN model 97.5% [29]

Machine vision + 
density measurement

Stale egg (storage time) 87 brown eggs Calibration model developed in the study 99% or more [38]

Machine vision + 
dielectric measurement

Stale egg (HU) 287 white eggs ANN model 99% or more [40]

Acoustic response Cracked egg 203 brown eggs FFT-DSP-calibration model developed in the study 98.0% [35]

Cracked egg 693 brown eggs PCA-FFT-QDA model 99.6% [33]

Negative pressure Cracked egg 160 white eggs Image processing algorithm developed in the study 98.7% [9]

Cracked egg 201 white eggs Image processing algorithm developed in the study 94.5% [36]

Vis-NIR spectroscopy Stale egg 
(albumen pH)

96 white eggs and 
96 brown eggs

MSC-SBC model (brown egg as a reference variety) 90.8% [17]

Bloody egg 200 brown eggs MSC-PLSDA model 97.9% (0.1 mL) [20]

Bloody egg 194 brown eggs MSC-1st derivative-BLR model 96.9% [49]

NIR spectroscopy Stale egg (HU) 185 white eggs SNV-1st SG derivative-iPLS-SVMR model 88.0% [19]

Stale egg 
(freshness grade)

185 white eggs SNV-1st SG derivative-PLSDA model 87.0%

Stale egg 176 eggs ICA-GA-ANN model 91.4% [47]

Stale egg (storage time) 66 brown eggs SG-ANN model 87.3% [48]

Hyper-spectral imaging Stale egg (HU) 100 white eggs SPA-SVMR model 84.0% [13]

Bubble in egg 80 white eggs PCA-GLCM-SVMC model 90% (90°)

Scattered yolk in egg 80 white eggs image-processing algorithm-SVMC model 96.3%

Stale egg (HU) 33 white eggs SNV-PLSR 85.0% [14]

Stale egg (HU) 150 brown eggs 0° scattering MSC-SPA model 100.0% [15]

Bloody egg 34 brown eggs Normalization-SPA-SVM model 96.4% (Input 4) [16]
FLI, fuzzy logic inference; Log, laplacian of gaussian; LFI, local fitting image; CNN, convolutional neural network; SMI, sequential multiple image; BiLSTM, bidirectional long-short-
term-memory; HU, haugh unit; LM, levenberg-marquardt; ANN, artificial neural network; FFT, fast Fourier transform; DSP, digital signal processing; PCA, principal component anal-
ysis; QDA, quadratic discriminant analysis; MSC, multiplicative scatter correction; SBC, slope/bias correction; PLSDA, partial least square discriminant analysis; BLR, binary logistic 
regression; SNV, standard normal variate; SG, Savitzky Golay; iPLS, interval partial least square; SVMR, support vector machine regression; ICA, independent component analysis; 
GA, genetic algorithm; SPA, successive projection algorithm; GLCM, gray level co-occurrence matrix; SVMC, support vector machine classification; PLSR, partial least square re-
gression; SVMC, support vector.



Current advances in detection of abnormal eggs

826  |  https://www.ejast.org https://doi.org/10.5187/jast.2022.e56

greater than 95% accuracy. The currently developed detection technologies for defects of eggs are 
summarized in Table 2. However, most of the studies were conducted on a laboratory scale, and 
the processing speed required from the commercial poultry industry was not achieved. Therefore, it 
is necessary to measure the number of inspections per unit time as a performance indicator of the 
technology in future studies.
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