• Title/Summary/Keyword: Imaging Sensor

검색결과 499건 처리시간 0.037초

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • 제16권3호
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • 제46권11호
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

Broadband Seismic Exploration Technologies via Ghost Removal (도깨비파 제거를 통한 광대역 탄성파 탐사 기술)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • 제21권3호
    • /
    • pp.183-197
    • /
    • 2018
  • In the delineation of geological structures using seismic exploration, it is very important to improve resolution of seismic data as well as accurate velocity model building and subsurface imaging. The resolution of seismic data can be enhanced by employing high-frequency energy sources or by applying deconvolution techniques in data processing. In marine seismic exploration, however, the main reason for degradation of resolution is the loss of specific frequency components due to ghosts. If we remove the ghosts, we can obtain broadband seismic data by avoiding frequency loss, and thus providing high-resolution subsurface images. Although ghosts can be properly filtered out in the data processing step, more effective broadband seismic technologies have been developing through the evolution of seismic instruments and the innovation of survey design. Overseas exploration companies developed brand-new configurations of receivers such as over/under streamer and variable-depth streamer, or ghost removal techniques using dual-sensor streamer to serve high-resolution imaging technologies. Unfortunately, neither broadband seismic instrument nor processing technique has been studied in Korea. In this paper, we introduce fundamental theories and current status of broadband seismic technologies to assist domestic researchers to study those technologies.

The effects of digital image processing for noise reduction on observer performance (노이즈 감소 필터 사용이 판독능에 미치는 효과)

  • Jung, Young-Chul;Choi, Bo-Ram;Huh, Kyung-Hoi;Yi, Yon-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제40권3호
    • /
    • pp.103-107
    • /
    • 2010
  • Purpose : This study was performed to examine the effects of image filter on observer performance by counting the number of holes at each wedge step on a radiographic image. Materials and Methods : An aluminum step wedge with 11 steps ranged in thickness from 1.5 mm to 16.5 mm in 1.5 mm increments was fabricated for this study. Each step had 10 notched holes with 1.0 mm diameter on the bottom of the step wedge which were ranged in depths from 0.1 mm to 1.0 mm in 0.1 mm increments. Digital radiographic raw images of the aluminum step wedge were acquired by using CCD intraoral sensor. The images were processed using several types of noise reduction filters and kernel sizes. Three observers counted the number of holes which could be discriminated on each step. The data were analyzed by ANOVA. Results : The number of holes at each step was decreased as the thickness of step was increased. The number of holes at each step on the raw images was significantly higher than that on the processed images. The number of holes was different according to the types and kernel sizes of the image filters. Conclusions : The types and kernel sizes of image filters on observer performance were important, therefore, they should be standardized for commercial digital imaging systems.

Optical Design of a Reflecting Omnidirectional Vision System for Long-wavelength Infrared Light (원적외선용 반사식 전방위 비전 시스템의 광학 설계)

  • Ju, Yun Jae;Jo, Jae Heung;Ryu, Jae Myung
    • Korean Journal of Optics and Photonics
    • /
    • 제30권2호
    • /
    • pp.37-47
    • /
    • 2019
  • A reflecting omnidirectional optical system with four spherical and aspherical mirrors, for use with long-wavelength infrared light (LWIR) for night surveillance, is proposed. It is designed to include a collecting pseudo-Cassegrain reflector and an imaging inverse pseudo-Cassegrain reflector, and the design process and performance analysis is reported in detail. The half-field of view (HFOV) and F-number of this optical system are $40-110^{\circ}$ and 1.56, respectively. To use the LWIR imaging, the size of the image must be similar to that of the microbolometer sensor for LWIR. As a result, the size of the image must be $5.9mm{\times}5.9mm$ if possible. The image size ratio for an HFOV range of $40^{\circ}$ to $110^{\circ}$ after optimizing the design is 48.86%. At a spatial frequency of 20 lp/mm when the HFOV is $110^{\circ}$, the modulation transfer function (MTF) for LWIR is 0.381. Additionally, the cumulative probability of tolerance for the LWIR at a spatial frequency of 20 lp/mm is 99.75%. As a result of athermalization analysis in the temperature range of $-32^{\circ}C$ to $+55^{\circ}C$, we find that the secondary mirror of the inverse pseudo-Cassegrain reflector can function as a compensator, to alleviate MTF degradation with rising temperature.

A Study of Data Management Methods through Shake Correction of Underwater Investigation Using High Resolution Side Scan SONAR (흔들림 보정을 통한 고해상 사이드스캔소나의 데이터 관리기법 연구)

  • Yi, Jong-Hwa;Kim, Young-Seok;Park, Chul;Choi, Sang-Sik;Lee, Heung-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제21권5호
    • /
    • pp.94-100
    • /
    • 2017
  • In the case of the side scan sonar operated by the towing method, the underwater structure electric jig was developed because there is a difficulty in the cross-sectional survey that the user wants when conducting the survey. However, in the case of the sound wave photographing method using the electric jig, since the boat and the sonar behaves as one body, data distortion has occurred due to various problems according to working environment, such as, the rolling phenomenon of the boat due to the wave and the fluctuation of the sonic image due to the inoperability of the boat driver. Therefore, in order to solve the image blurring caused by the operation of the equipment for underwater survey of the existing side scan sonar, in this research, the program was supplemented to enable the shake correction by attaching the shake correction sensor and developing the shake correction algorithm. In order to verify the improvement of the sonar data resolution, the sonic images before and after the shake correction were collected through on-site investigation and the analysis of the sonic image data acquired by a diver measuring the actual damage length and depth. This study is expected to contribute to the development of sonar imaging technique of the underwater surface of the structure and bed surface of the sea or a river using the side scan sonar in the future.

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique (SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정)

  • Kim, Ah-Leum;Song, Jung-Hwan;Kang, Seo-Li;Lee, Woo-Kyung
    • Korean Journal of Remote Sensing
    • /
    • 제30권4호
    • /
    • pp.431-444
    • /
    • 2014
  • As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

An Analysis of Spectral Characteristic Information on the Water Level Changes and Bed Materials (수위변화에 따른 하상재료의 분광특성정보 분석)

  • Kang, Joongu;Lee, Changhun;Kim, Jihyun;Ko, Dongwoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • 제6권4호
    • /
    • pp.243-249
    • /
    • 2019
  • The purpose of this study is to analyze the reflectance of bed materials according to changes in the water level using a drone-based hyperspectral sensor. For this purpose, we took hyperspectral images of bed materials such as soil, gravel, cobble, reed, and vegetation to compare and analyze the spectral data of each material. To adjust the water level, we constructed an experimental channel to control the discharge and installed the bed materials within the channel. In this study, we configured 3 cases according to the water level (0.0 m, 0.3 m, 0.6 m). After the imaging process, we used the mean value of 10 points for each bed material as analytical data. According to the analysis, each material showed a similar reflectance by wavelength and the intrinsic reflectance characteristics of each material were shown in the visible and near-infrared region. Also, the deeper the water level, the lower the peak reflectance in the visible and near-infrared region, and the rate of decrease differed depending on the bed material. We expect the intrinsic properties of these bed materials to be used as basic research data to evaluate river environments in the future.

Design of Real-Time Dead Pixel Detection and Compensation System for Image Quality Enhancement in Mobile Camera (모바일 카메라 화질 개선을 위한 실시간 불량 화소 검출 및 보정 시스템의 설계)

  • Song, Jin-Gun;Ha, Joo-Young;Park, Jung-Hwan;Choi, Won-Tae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제8권4호
    • /
    • pp.237-243
    • /
    • 2007
  • In this paper, we propose the Real-time Dead-Pixel Detection and Compensation System for mobile camera and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However a conventional Dead-Pixel Detection Algorithm is disable to detect neighboring dead pixels and it degrades image quality by wrong detection and compensation. To detect dead pixels the proposed system is classifying dead pixels into Hot pixel and Cold pixel. Also, the proposed algorithm is processing line-detector and $5{\times}5$ window-detector consecutively. The line-detector and window-detector can search dead pixels by using one-dimensional(only horizontal) method in low frequency area and two-dimensional(vertical and diagonal) method in high frequency area, respectively. The experimental result shows that it can detect 99% of dead pixels. It was designed in Verilog hardware description language and total gate count is 23K using TSMC 0.25um ASIC library.

  • PDF