• Title/Summary/Keyword: Imaging Processing Technique

Search Result 187, Processing Time 0.026 seconds

Free-view Pixels of Elemental Image Rearrangement Technique (FPERT)

  • Lee, Jaehoon;Cho, Myungjin;Inoue, Kotaro;Tashiro, Masaharu;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.60-66
    • /
    • 2019
  • In this paper, we propose a new free-view three-dimensional (3D) computational reconstruction of integral imaging to improve the visual quality of reconstructed 3D images when low-resolution elemental images are used. In a conventional free-view reconstruction, the visual quality of the reconstructed 3D images is insufficient to provide 3D information to applications because of the shift and sum process. In addition, its processing speed is slow. To solve these problems, our proposed method uses a pixel rearrangement technique (PERT) with locally selective elemental images. In general, PERT can reconstruct 3D images with a high visual quality at a fast processing speed. However, PERT cannot provide a free-view reconstruction. Therefore, using our proposed method, free-view reconstructed 3D images with high visual qualities can be generated when low-resolution elemental images are used. To show the feasibility of our proposed method, we applied it to optical experiments.

A ROBUST METHOD MINIMIZING DIGITIZATION ERRORS IN SKELETONIZATION OF THREE DIMENSIONAL BINARY SEGMENTED IMAGE

  • Shin, Hyun-Kyung
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.425-434
    • /
    • 2004
  • Pattern recognition in three dimensional image is highly sensitive to assigned value and formation of voxels (pixels for two dimension case). However, occurred while digital imaging, digitization error leads to unpredictable noises in image data. Skeletonization, a powerful tool of pattern recognition, is sensitively dependent on boundary formation. Without successful controlling of the noises, the results of skeletonization can not be allowed as a stable solution. To minimize the effect of noises affecting to boundary formation, we developed a robust processing method useful in skeletonization technique for pattern recognition. Finally, we provide rigorous test results achieved throughout simulation on analytic three dimensional image.

High Resolution Electronic Processor Design for Thermal Imager with 320x240 Staring Array Infrared Detector (320x240 적외선 배열검출기를 이용한 고분해능 열상 신호처리기 구현)

  • Hong, Seok-Min;Yu, Wee-Kyung;Yoon, Eun-Suk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.111-117
    • /
    • 2006
  • This paper describes the design principles and methods of electronic processor for thermal imager with 320$\times$240 staring array infrared detector. For the detector's nonuniformity correction and excellent image quality, we have designed the multi-point correction method using the defocusing technique of the optics. And to enhance the image of low contrast and improve the detection capability, the new technique of histogram processing has been designed. Through these image processing techniques, we have developed the high quality thermal imager and acquired a satisfactory thermal image. The result of MRTD(Minimum Resolvable Temperature Difference) is $0.1^{\circ}C$ at 4cycles/mard.

Development of Electron Beam Monte Carlo Simulation and Analysis of SEM Imaging Characteristics (전자빔 몬테 카를로 시물레이션 프로그램 개발 및 전자현미경 이미징 특성 분석)

  • Kim, Heung-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.554-562
    • /
    • 2012
  • Processing of Scanning electron microscope imaging has been analyzed in both secondary electron (SE) imaging and backscattered electron (BSE) image. Because of unique characteristics of both secondary electron and backscattered electron image, mechanism of imaging process and image quality are quite different each other. For the sake of characterize imaging process, Monte Carlo simulation code have been developed. It simulates electron penetration and depth profile in certain material. In addition, secondary electron and backscattered electron generation process as well as their spatial distribution and energy characteristics can be simulated. Geometries that has fundamental feature have been imaged using the developed Monte Carlo code. Two, SE and BSE images generation process will be discussed. BSE imaging process can be readily used to discriminate in both material and geometry by simply changing position and direction of BSE detector. The developed MC code could be useful to design BSE detector and their position. Furthermore, surface reconstruction technique is possibly developed at the further research efforts. Basics of Monte Carlo simulation method will be discussed as well as characteristics of SE and BSE images.

Multiple GPU Scheduling for Improved Acquisition of Real-Time 360 VR Game Video (실시간 360 VR 스테레오 게임 영상 획득 성능 개선을 위한 다중 GPU 스케줄링에 관한 연구)

  • Lee, Junsuk;Paik, Joonki
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.974-982
    • /
    • 2019
  • Real-time 360 VR (Virtual Reality) stereo image acquisition technique based on game engine was proposed. However, GPU (Graphics Processing Unit) resource is not fully utilized due to bottlenecks. In this paper, we propose an improved GPU scheduling technique to solve the bottleneck of the existing technique and measure the performance of the proposed technique using the sample games of the commercial game engine. As a result, proposed technique showed an improvement of performance up to 70% and usage of GPU resources more evenly compared existing technique.

The Clustering Threshold Image Processing Technique in fMRI (핵자기 뇌기능 영상에서 군집경계기법을 이용한 영상처리법)

  • Jeong, Sun-Cheol;No, Yong-Man;Jo, Jang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.425-430
    • /
    • 1995
  • The correlation technique has been widely used in ctRl data processing. The proposed CLT (clus- tering threshold) technique is a modified CCT (correlation coefficient threshold) technique and has many advantages compared with the conventional CCT technique. The CLT technique is explained by the following two steps. First, once the correlation coefficient map above the proper TH value is obtained using the CCT technique which is discrete and includes splash noise data, then the spurious pixels are rejected and the real neural activity pixels extracted using an nxn matrix box. Second, a clustering operation is performed by the two correction rules. The real neuronal activated pixels can be clustered and the false spurious pixels can be suppressed by the proposed CLT technique. The proposed CLT technique used in the post processing in ctRl has advantages over other existing techniques. It is especially proved to be robust in noisy environment.

  • PDF

Study on Bruise Detection of 'Fuji' apple using Hyperspectral Reflectance Imagery (초분광 반사광 영상을 이용한 '후지' 사과의 멍 검출에 관한 연구)

  • Cho, Byoung-Kwan;Baek, In-Suck;Lee, Nam-Geun;Mo, Chang-Yeun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.484-490
    • /
    • 2011
  • Defects exist underneath the fruit skin are not easily discernable by using conventional color imaging technique in the visible wavelength ranges. Development of sensitive detection methods for the defects is necessary to ensure accurate quality sorting of fruits. Hyperspectral imaging techniques, which combine the features of image and spectroscopy to acquire spatial and spectral information simultaneously, have demonstrated good potentials for identifying and detecting anomalies on biological substances. In this study, a high spatial resolution hyperspectral reflectance technique was presented as a tool for detecting bruises on apple. The two-band ratio (494 nm / 952 nm) and simple threshold methods were applied to investigate the feasibility of discriminating the bruises from sound tissue of apple. The pixel wise accuracy of the discrimination was 74%. The resultant images processed with selected wavebands and morphologic algorithm distinctively showed the early stages of bruises on apple which were not discernable by naked eyes as well as a conventional color camera. Results demonstrated good potential of the hyperspectral reflectance imaging for detection of bruises on apple.

A Noise Reduction Technique for Enhancing Pituitary Adenoma Diagnostic on Magnetic Resonance Image (개선된 뇌하수체 선종 진단을 위한 자기공명영상 노이즈 제거 기법)

  • Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.285-290
    • /
    • 2019
  • Magnetic resonance imaging is a technique specialized in soft tissue imaging with high contrast resolution without in vivo ionization and has been widely used in various clinical settings. In particular, the recent increase in social stress factors has been used in the diagnosis of pituitary adenoma, the incidence increases rapidly. Recently, due to the development of magnetic resonance imaging, it is possible to diagnose micro pituitary adenoma, but despite the use of contrast medium, there has been a difficulty in diagnosing the pituitary adenoma due to its small size and noise. In order to solve this problem, a proposed method of separating signal components image and noise components image from a measured image is applied, and the improvement of diagnostic efficiency is attempted by removing noise. As a result, it was confirmed that the image quality was improved as a whole by applying SNR for 30 subjects data. It is expected that this study will be useful as a pre-processing method for improving the image quality and developing diagnostic indicators of pituitary adenoma.

Reversible Image Watermarking with Differential Histogram Shifting and Error Prediction Compensation (차이값 히스토그램 쉬프팅과 오류 예측 보정을 이용한 가역 영상 워터마킹)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun;Kim, Byeong-Man;Kim, Kyung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.417-429
    • /
    • 2010
  • Reversible watermarking inserts watermark into digital media in such a way that visual transparency is preserved and then enables to restore the original media from the marked one without any loss of media quality. This watermarking can be applied to quality-sensitive imaging such as medical imaging, military imaging, remote-sensing imaging, and precious artwork, where the original media should be preserved during image processing and analysis. In this paper, a reversible image watermarking technique that embeds message bits by modifying the differential histogram of adjacent pixels is presented. In order to satisfy both high embedding capacity and visual quality, the proposed technique exploits the fact that adjacent pixels in the image have highly spatial correlation. Also, we prevent overflow/underflow problem and salt-and-pepper artifacts by employing a predicted error compensation scheme. Through experiments using various test images, we prove that the presented technique provides perfect reversibility and high embedding capacity, while maintaining the induced-distortion low.

Digital Imaging Source Identification Using Sensor Pattern Noises (센서 패턴 잡음을 이용한 디지털 영상 획득 장치 판별)

  • Oh, Tae-Woo;Hyun, Dai-Kyung;Kim, Ki-Bom;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.12
    • /
    • pp.561-570
    • /
    • 2015
  • With the advance of IT technology, contents from digital multimedia devices and softwares are widely used and distributed. However, novice uses them for illegal purpose and hence there are needs for protecting contents and blocking illegal usage through multimedia forensics. In this paper, we present a forensic technique for identifying digital imaging source using sensor pattern noise. First, the way to acquire the sensor pattern noise which comes from the imperfection of photon detector against light is presented. Then, the way to identify the similarity of digital imaging sources is explained after estimating the sensor pattern noises from the reference images and the unknown image. For the performance analysis of the proposed technique, 10 devices including DSLR camera, compact camera, smartphone and camcorder are tested and quantitatively analyzed. Based on the results, the proposed technique can achieve the 99.6% identification accuracy.