• Title/Summary/Keyword: Imaging Measurement Technique

Search Result 193, Processing Time 0.026 seconds

Comparison of the capsular width measured on ultrasonogrape and MR image of the temporomandibular joint (측두하악관절의 초음파영상과 자기공명영상에서 하악과두 외측면과 관절낭간 거리 측정치 비교)

  • Lee Tae-Wan;Yoo Dong-Soo;Han Won-Jeong;Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.36 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • Purpose : To evaluate the reliability and clinical usefulness of ultrasonography in the temporomandibular joint (TMJ). Materials and Methods : Parasagittal and paracoronal 1.5 T MR images and 7.5 MHz ultrasonographs of 40 TMJs in 20 asymptomatic volunteers were obtained. Disc position using MR imaging was evaluated and the distance between the lateral surface of mandibular condyle and the articular capsule using MR image and ultrasonograph of 27 TMJs with normal disc position was measured and compared. Intraobserver and interobserver measurements reliability was evaluated by using interclass correlation coefficients (ICC) and measurement error. Also, the distance measured on ultrasonographs was compared, according to mouth position and disc postion. Results : The normal disc position was found in 27 of 40 asymptomatic joints. At the intraobserver reliability of measurement, ICC at the closed and open mouth position were 0.89 and 0.91. The measurement error was 0.4% and 0.5%. At the interobserver reliability, ICC at the closed and open mouth position were 0.92 and 0.81. The measurement error was 0.4% and 0.7%. At the TMJ with normal disc position, the distances between the lateral surface of mandibular condyle and the articular capsule measured on MR images and ultrasonographs were $2.0{\pm}0.7mm,\;1.8{\pm}0.5mm$, respectively (p<0.05). On the ultrasonographs, the distances at open mouth position were $1.2{\pm}0.5mm$ (p<0.05). At the TMJ with medially displaced disc, the distances at the closed and open mouth position were $1.3{\pm}0.3\;mm\;and\;0.9{\pm}0.2\;mm$ (p<0.05). Conclusion : The results suggest ultrasonography of TMJ is a reliable imaging technique for assessment of normal disc position.

  • PDF

A Volume Reconstruction Algorithm and a Coordinate Calibration of an X-ray Three Dimensional Imaging System

  • Roh, Young-Jun;Cho, Hyung-Suck;Jeon, Hyoung-Jo;Kim, Hyeong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.3-63
    • /
    • 2001
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. In this paper, we propose a three dimensional volume reconstruction method, which is an iterative method and as uniform and simulated algebraic reconstruction technique (USART). In this method, two or more x-ray images projected from different views are needed, and also the geometry of the imaging system need to be a priori identified well. That is to say, the relative locations between the x-ray source, imaging plane and the object should be determined exactly by calibration. To achieve this, we propose a series of coordinate calibration methods of the x-ray imaging system using grid pattern images. Some experimental results of these calibrations is presented and discussed in detail ...

  • PDF

Flow Measurement in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging (Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측)

  • Kim Yang Min;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.83-86
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of $30.7{\mu}m/s$ and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.

  • PDF

Spray Measurement Using Optical Line Patternator at High Ambient Pressure (광학 선형 패터네이터를 이용한 고압 환경 하에서의 분무 측정)

  • Koh Hyeonseok;Shin Sanghee;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • Optical Line Patternator(OLP) has been applied to get a distribution of the spray at high ambient pressure. OLP is a combined technique of extinction measurement and image processing. The attenuated intensity of laser beam after traversing spray region was measured by using a photo-detector, and the line image of Mie-scattering was captured simultaneously in the path of each laser beam by using a CCD camera. The distribution of extinction coefficient in the spray is obtained by processing these data with the algebraic reconstruction technique. From the distribution of extinction coefficient, the surface distribution of spray can be reconstructed. OLP does not use laser sheet but use laser beam so that the noise effect of multiple scattering, caused by increasing number density of droplet in high pressure environment, is reduced drastically. OLP is expected as a suitable method which can investigate the characteristics of relatively large spray under the high pressure environment such as liquid rocket engine.

  • PDF

Multi-phase Flow Velocity Measurement Technique using Shadow Graphic Images (다위상 유체 속도 계측을 위한 영상기법 적용)

  • Ryu, Yong-Uk;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.61-65
    • /
    • 2012
  • Air-water flow measurements are of importance for the coastal and ocean engineering fields. Although kinematic investigations of the multi-phase flows have been conducted for long time, velocity measurements still are concerned with many researchers and engineers in coastal and ocean areas. In the present study, an imaging technique using shadowgraphy and fiber optic probe for velocity measurements of air bubbles is introduced. The shadow graphy image technique is modified from the typical image velocimetry methods, and optical fibers are used for the well-known intrusive coupled phase-detection probe system. Since the imaging technique is a non-intrusive optical method from the air, it is usually applied for 2D flows. On the other hand, the double fiber optic probes touch flows regardless of flow patterns. The results of the flow measurements by both methods are compared and discussed. The methods are also applied to the measurements of overtopping flows by a breaking wave over the structure fixed on the free surface.

A Study of HDR Software Reliability for the Luminance Map Creation (휘도맵의 작성을 위한 HDRI 생성 도구의 신뢰도에 관한 연구)

  • Hong, Sung-De
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.81-89
    • /
    • 2012
  • Luminance is the most important quantity in lighting design and illuminating engineering. There are three methods for measuring luminance; using a conventional luminance meter, through the illuminance measurement and subsequent calculations and using digital imaging photometer. Recently, HDRI(High Dynamic Range Imaging) technique introduces a new method of capturing luminance values in a lighting environment. The radiance maps from HDRI are commonly used as visual environment maps for lighting analysis applications. For the HDRI, HDR software is needed to create HDR image. Currently, there is number of HDR software available. The purpose of this paper is to investigate whether a luminance map can be accurately captured by the various types of HDR software which include HDR Shop and Photoshop. To accomplish this goal a set of experiments was conducted. In order to assess the luminance values of the HDR image from HDR software, the values had to be compared to the ones obtained with conventional methods of luminance measurement.

The quantification of photon counts using the concept of candela (Candela 개념의 광량정량화 활용에 관한 연구)

  • Kim, Hyeon Sik;Choi, Eun Seo;Lee, Byeong-Il
    • Journal of Integrative Natural Science
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • We developed quantification method based on the concept of candela in physics. The measurement of fluorescence signal from a nude mouse in the research of molecular biology. In the measurement of the optical signal with CCD, the quantification method for photon counts based on bio-luminescence imaging technique can provide comparative reference data. In this paper, we described theoretical derivation of our proposed concept. We hope this method could be a useful standard reference for quantitative date analysis in optical imaging.

  • PDF

A Study on the MEG Imaging (MEG 영상진단 검사에 관한 연구)

  • Kim, Jong-Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Observation of Susceptibility Change in fMRI Using SSFP Interferometry (SSFPI) Technique (핵자기 뇌기능 영상에서 SSFPI 기법을 이용한 자화율효과의 관찰)

  • Chung, J.Y.;Chung, S.C.;Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.173-176
    • /
    • 1995
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRI (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of gradient (readout) allows us to measure precession angle $\theta$ which is in turn related to the field inhomogeneity [1-3]. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRI), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are also presented.

  • PDF

Transport property of a Se:As films for digital x ray imaging

  • Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.85-88
    • /
    • 2006
  • The transport properties of amorphous selenium typical of the material used in direct conversion x-ray imaging devices are reported. The effects of As addition on the carrier mobility and recombination lifetime in amorphous selenium (a-Se) films have been studied using the moving photocarrier grating (MPG) technique. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density. The transport properties for As doped a-Se films obtained by using MPG technique have been compared with the drift mobilities of holes and electrons obtained by time of flight (TOF) measurement.

  • PDF