• Title/Summary/Keyword: Image-Based Rendering

Search Result 320, Processing Time 0.026 seconds

Enhancement Method of Depth Accuracy in DIBR-Based Multiview Image Generation (다시점 영상 생성을 위한 DIBR 기반의 깊이 정확도 향상 방법)

  • Kim, Minyoung;Cho, Yongjoo;Park, Kyoung Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.237-246
    • /
    • 2016
  • DIBR (Depth Image Based Rendering) is a multimedia technology that generates the virtual multi-view images using a color image and a depth image, and it is used for creating glasses-less 3-dimensional display contents. This research describes the effect of depth accuracy about the objective quality of DIBR-based multi-view images. It first evaluated the minimum depth quantization bit that enables the minimum distortion so that people cannot recognize the quality degradation. It then presented the comparative analysis of non-uniform domain-division quantization versus regular linear quantization to find out how effectively express the accuracy of the depth information in same quantization levels according to scene properties.

RAY-SPACE INTERPOLATION BYWARPING DISPARITY MAPS

  • Moriy, Yuji;Yendoy, Tomohiro;Tanimotoy, Masayuki;Fujiiz, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.583-587
    • /
    • 2009
  • In this paper we propose a new method of Depth-Image-Based Rendering (DIBR) for Free-viewpoint TV (FTV). In the proposed method, virtual viewpoint images are rendered with 3D warping instead of estimating the view-dependent depth since depth estimation is usually costly and it is desirable to eliminate it from the rendering process. However, 3D warping causes some problems that do not occur in the method with view-dependent depth estimation; for example, the appearance of holes on the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Depth discontinuity causes artifacts on the rendered image. In this paper, these problems are solved by reconstructing disparity information at virtual camera position from neighboring two real cameras. In the experiments, high quality arbitrary viewpoint images were obtained.

  • PDF

B-spline Volume BRDF Representation and Application in Physically-based Rendering (물리기반 렌더링에서의 비스플라인 볼륨 BRDF 표현과 응용)

  • Lee, Joo-Haeng;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Physically-based rendering is an image synthesis technique based on simulation of physical interactions between light and surface materials. Since generated images are highly photorealistic, physically-based rendering has become an indispensable tool in advanced design visualization for manufacturing and architecture as well as in film VFX and animations. Especially, BRDF (bidirectional reflectance distribution function) is critical in realistic visualization of materials since it models how an incoming light is reflected on the surface in terms of intensity and outgoing angles. In this paper, we introduce techniques to represent BRDF as B-spline volumes and to utilize them in physically-based rendering. We show that B-spline volume BRDF (BVB) representation is suitable for measured BRDFs due to its compact size without quality loss in rendering. Moreover, various CAGD techniques can be applied to B-spline volume BRDFs for further controls such as refinement and blending.

Design of a Dual Network based Neural Architecture for a Cancellation of Monte Carlo Rendering Noise (몬테칼로 렌더링 노이즈 제거를 위한 듀얼 신경망 구조 설계)

  • Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1366-1372
    • /
    • 2019
  • In this paper, we designed a revised neural network to remove the Monte Carlo Rendering noise contained in the ray tracing graphics. The Monte Carlo Rendering is the best way to enhance the graphic's realism, but because of the need to calculate more than thousands of light effects per pixel, rendering processing time has increased rapidly, causing a major problem with real-time processing. To improve this problem, the number of light used in pixels is reduced, where rendering noise occurs and various studies have been conducted to eliminate this noise. In this paper, a deep learning is used to remove rendering noise, especially by separating the rendering image into diffuse and specular light, so that the structure of the dual neural network is designed. As a result, the dual neural network improved by an average of 0.58 db for 64 test images based on PSNR, and 99.22% less light compared to reference image, enabling real-time race-tracing rendering.

Intermediate View Synthesis Method using Kinect Depth Camera (Kinect 깊이 카메라를 이용한 가상시점 영상생성 기술)

  • Lee, Sang-Beom;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.29-35
    • /
    • 2012
  • A depth image-based rendering (DIBR) technique is one of the rendering processes of virtual views with a color image and the corresponding depth map. The most important issue of DIBR is that the virtual view has no information at newly exposed areas, so called dis-occlusion. In this paper, we propose an intermediate view generation algorithm using the Kinect depth camera that utilizes the infrared structured light. After we capture a color image and its corresponding depth map, we pre-process the depth map. The pre-processed depth map is warped to the virtual viewpoint and filtered by median filtering to reduce the truncation error. Then, the color image is back-projected to the virtual viewpoint using the warped depth map. In order to fill out the remaining holes caused by dis-occlusion, we perform a background-based image in-painting operation. Finally, we obtain the synthesized image without any dis-occlusion. From experimental results, we have shown that the proposed algorithm generated very natural images in real-time.

  • PDF

Occlusion-based Direct Volume Rendering for Computed Tomography Image

  • Jung, Younhyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • Direct volume rendering (DVR) is an important 3D visualization method for medical images as it depicts the full volumetric data. However, because DVR renders the whole volume, regions of interests (ROIs) such as a tumor that are embedded within the volume maybe occluded from view. Thus, conventional 2D cross-sectional views are still widely used, while the advantages of the DVR are often neglected. In this study, we propose a new visualization algorithm where we augment the 2D slice of interest (SOI) from an image volume with volumetric information derived from the DVR of the same volume. Our occlusion-based DVR augmentation for SOI (ODAS) uses the occlusion information derived from the voxels in front of the SOI to calculate a depth parameter that controls the amount of DVR visibility which is used to provide 3D spatial cues while not impairing the visibility of the SOI. We outline the capabilities of our ODAS and through a variety of computer tomography (CT) medical image examples, compare it to a conventional fusion of the SOI and the clipped DVR.

A Study on Delta Image Composition Methods of the Depth-Image-Based Rendering for the Generation of Stereoscopic Images on Mobile Devices (모바일 장치에서 입체 영상 생성을 위한 깊이 영상 기반 렌더링의 부가 정보 영상 구성 방법에 관한 연구)

  • Kim, Min-Young;Park, Kyoung-Shin;Choo, Hyon-Gon;Kim, Jin-Woong;Cho, Yong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1428-1436
    • /
    • 2012
  • This paper presents the delta image composition methods using Depth-Image-Based Rendering (DIBR) for 3D stereoscopic broadcasting for the low bandwidth mobile DMB broadcasting system. With DIBR, a left and depth images are transmitted to a mobile device, which restores the right view, whose quality may be poor. This paper describes delta image composition methods for the restoration while minimizing the amount of the transmitted data.

Non-Photorealistic Rendering Using CUDA-Based Image Segmentation (CUDA 기반 영상 분할을 사용한 비사실적 렌더링)

  • Yoon, Hyun-Cheol;Park, Jong-Seung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.529-536
    • /
    • 2015
  • When rendering both three-dimensional objects and photo images together, the non-photorealistic rendering results are in visual discord since the two contents have their own independent color distributions. This paper proposes a non-photorealistic rendering technique which renders both three-dimensional objects and photo images such as cartoons and sketches. The proposed technique computes the color distribution property of the photo images and reduces the number of colors of both photo images and 3D objects. NPR is performed based on the reduced colormaps and edge features. To enhance the natural scene presentation, the image region segmentation process is preferred when extracting and applying colormaps. However, the image segmentation technique needs a lot of computational operations. It takes a long time for non-photorealistic rendering for large size frames. To speed up the time-consuming segmentation procedure, we use GPGPU for the parallel computing using the GPU. As a result, we significantly improve the execution speed of the algorithm.

Construction of Visual Space using Relief Texture Mapping (Relief Texture 매핑을 이용한 가상공간 구축)

  • 이은경;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1899-1902
    • /
    • 2003
  • Recently several methods have been developed for the virtual space construction. Generally, most of the methods are geometric-based rendering technic, but they are difficult to construct real-time rendering because of large data. In this paper, we present a three dimension image-based rendering method that enable a constant speed of real-time rendering regardless of object complexity in virtual space. The Proposed method shows good performance for the virtual space construction with high complexity.

  • PDF

Study on Compositing Editing of 360˚ VR Actual Video and 3D Computer Graphic Video (360˚ VR 실사 영상과 3D Computer Graphic 영상 합성 편집에 관한 연구)

  • Lee, Lang-Goo;Chung, Jean-Hun
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2019
  • This study is about an efficient synthesis of $360^{\circ}$ video and 3D graphics. First, the video image filmed by a binocular integral type $360^{\circ}$ camera was stitched, and location values of the camera and objects were extracted. And the data of extracted location values were moved to the 3D program to create 3D objects, and the methods for natural compositing was researched. As a result, as the method for natural compositing of $360^{\circ}$ video image and 3D graphics, rendering factors and rendering method were derived. First, as for rendering factors, there were 3D objects' location and quality of material, lighting and shadow. Second, as for rendering method, actual video based rendering method's necessity was found. Providing the method for natural compositing of $360^{\circ}$ video image and 3D graphics through this study process and results is expected to be helpful for research and production of $360^{\circ}$ video image and VR video contents.