오픈소스는 4차 산업혁명의 핵심 성장 동력으로서 다양한 영상해석 알고리즘의 지속적인 개발과 활용이 기대되고 있다. 본 연구의 목적은 UAS 영상해석 오픈소스 기반 알고리즘의 3차원 재현 중 물의 재현 및 이동체 필터링 기능과 데이터 처리 소요시간을 중점으로 비교·분석하여 효용성을 검토하는 것이다. 5가지 매칭 알고리즘을 'ANN-Benchmarks' 프로그램을 통해 재현율 및 처리속도 기준으로 비교하였고 HNSW(hierarchical navigable small world) 매칭 알고리즘이 가장 양호한 것으로 판단하였다. 이를 바탕으로 삼각측량, 점군 데이터 조밀화, 표면생성의 단계별 기법들을 조합하여 108가지 영상해석 알고리즘을 구성하였다. 또한, 바다와 인접한 공원의 UAS(unmanned aerial system) 영상을 대상으로 108가지 영상해석 알고리즘의 3차원 재현 및 데이터 처리 소요시간을 고찰하고 상업용 영상해석 소프트웨어 'Pix4D Mapper'와 비교·분석하였다. 연구 결과, 3차원 재현 중 물의 재현 및 이동체 필터링 기능 면에서 양호한 알고리즘을 각각 특정하였고 소요시간이 가장 낮은 알고리즘을 선정, 'Pix4D Mapper' 처리 결과와 비교하여 알고리즘의 효용성을 입증하였다.
다시점 디스플레이용 영상은 주로 레퍼런스가 되는 컬러 카메라와 깊이 카메라의 영상을 입력 받아 DIBR (Depth Image Based Rendering) 기법을 활용, 3차원 점 구름 형태로 재구성 한 후 가상 카메라를 여러 시점에서 배치하여 중간 영상을 생성하여 조합하였다. 이렇게 다시점 중간 영상을 생성하면 원래의 시점에서는 구멍이 없었지만 다른 시점에서는 구멍(Hole)이 보이는 현상이 발생한다. 기존에는 틈새 영역을 채우는 알고리즘을 개발하거나 깊이 영상을 보정하여 개선시키는 방법을 연구하였으나 본 논문에서는 점 구름을 메시(Mesh)화 시키는 알고리즘 중 한 가지인 볼 피봇팅(Ball Pivoting) 방법을 적용시켜 중간 영상의 화질 개선 방법을 설명하고 있다. 마이크로소프트사의 발레와 브레이크 댄서 영상에 개발된 개선 방법을 적용시켜 보았고 PSNR로 비교할 때 약 0.18~1.19정도의 향상을 보임을 확인하였다. 본 논문을 통해 개선 방법과 실험방법, 그리고 결과에 대해 설명한다.
본 연구에서는 식생이 무성한 제방의 이상유무 점검을 위한 지상 LiDAR(Light Detection And Ranging) 측량의 적용성을 검토하였다. 지상 LiDAR 측량으로 생성된 제방의 영상 점군 자료에 색상필터 및 형태필터를 적용하여 각 기법별 정확성과 특성을 평가하였다. 임진강 제방의 영상 점군 자료를 이용하여 CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, ISL 등의 10가 식생 제거 필터를 적용하였다. 결과에 의하면 정확성은 ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, CIVE 등의 순서로 나타났다. 색상필터는 지반 구분에 한계를 보였으며 풀꽃을 지반으로 구분하기도 했다. 형태필터는 지반 구분 정확도가 우수하나 거석을 식생으로 인식하는 한계도 보였다. 전체적으로 형태필터가 우수하나 계산 시간에서 10 배 정도 소요되었다. 정확도와 속도 향상을 위해서 형태필터와 색상필터를 결합한 복합필터에 대한 연구가 필요하다.
본 논문에서는 스테레오 비전 센서를 이용한 프리팹 강구조물(PSS: Prefabricated Steel Structures)의 조립부 형상 품질 평가 기법을 소개한다. 스테레오 비전 센서를 통해 모형의 조립부 영상과 포인트 클라우드 데이터를 수집하였으며, 퍼지 기반 엣지 검출, 허프 변환 기반 원형의 볼트 홀 검출 등의 영상처리 알고리즘을 적용하여 조립부 영역의 볼트홀을 검출하였다. 영상 내 추출된 볼트홀 외곽선 위 세 점의 위치 정보에 대응되는 3차원 실세계 위치 정보를 깊이 영상으로부터 획득하였으며, 이를 기반으로 각 볼트홀의 3차원 중심 위치를 계산하였다. 통계적 기법 중 하나인 주성분 분석 알고리즘(PCA: Principal component analysis) 알고리즘을 적용함으로써 3차원 위치 정보를 대표하는 최적의 좌표축을 계산하였다. 이를 통해 센서의 설치 방향 및 위치에 따라 센서와 부재 간 평행이 아니더라도 안정적으로 볼트홀 간의 거리를 계측하도록 하였다. 각 볼트홀의 2차원 위치 정보를 기반으로 볼트홀의 순서를 정렬하였으며, 정렬된 볼트홀의 위치 정보를 바탕으로 인접한 볼트홀 간의 각 축의 거리 정보를 계산하여 조립부 볼트홀 위치 중심의 형상 품질을 분석하였다. 측정된 볼트홀 간의 거리 정보는 실제 도면의 거리 정보와의 절대오차와 상대오차를 계산하여 성능 비교를 진행하였으며, 중앙값 기준 1mm 내의 절대오차와 4% 이내의 상대오차의 계측 성능을 확인하였다.
The purpose of our sensor system is to transparentize the large hydraulic manipulators of a six-ton dual arm excavator from the operator camera view. Almost 40% of the camera view is blocked by the manipulators. In other words, the operator loses 40% of visual information which might be useful for many manipulator control scenarios such as clearing debris on a disaster site. The proposed method is based on a 3D reconstruction technology. By overlaying the camera image from front top of the cabin with the point cloud data from RGB-D (red, green, blue and depth) cameras placed at the outer side of each manipulator, the manipulator-free camera image can be obtained. Two additional algorithms are proposed to further enhance the productivity of dual arm excavators. First, a color correction algorithm is proposed to cope with the different color distribution of the RGB and RGB-D sensors used on the system. Also, the edge overlay algorithm is proposed. Although the manipulators often limit the operator's view, the visual feedback of the manipulator's configurations or states may be useful to the operator. Thus, the overlay algorithm is proposed to show the edge of the manipulators on the camera image. The experimental results show that the proposed transparentization algorithm helps the operator get information about the environment and objects around the excavator.
인간과 컴퓨터 사이의 보다 자연스러운 상호적인 인터페이스를 효과적으로 구현하기 위해서 사람의 제스처를 활용하려는 노력이 최근 들어 지속적으로 시도되고 있다. 본 논문에서는 연속적으로 입력되는 3차원의 깊이 영상을 받아들여서 손 모델을 정의하고, 정의된 손 모델을 기반으로 사람의 손 영역을 강인하게 추출하는 알고리즘을 제시한다. 본 논문에서 제시된 알고리즘에서는 먼저 21개의 관절을 사용하여 손 모델을 정의한다. 본 논문에서 정의한 손 모델은 6개의 손바닥 관절을 포함하는 손바닥 모델과 15개의 손가락 관절을 포함하는 손가락 모델로 구성된다. 그런 다음, 입력되는 3차원의 깊이 영상을 적응적으로 이진화함으로써, 배경과 같은 비관심 영역들은 제외하고, 관심 영역인 사람의 손 영역만을 정확하게 추출한다. 실험 결과에서는 제시된 알고리즘이 연속적으로 입력되는 깊이 영상으로부터 배경과 같은 영역들은 제외하고 사람의 손 영역만을 기존의 알고리즘에 비해 약 2.4% 보다 강인하게 검출한다는 것을 보여준다. 본 논문에서 제안된 손 영역 추출 알고리즘은 제스처 인식, 가상현실 구현, 3차원 운동 게임, 수화 인식 등과 같은 컴퓨터 비전 및 영상 처리와 관련된 여러 가지의 실제적인 분야에서 유용하게 활용될 것으로 기대된다.
This paper presents a 6-DOF relocalization using a 3D laser scanner and a monocular camera. A relocalization problem in robotics is to estimate pose of sensor when a robot revisits the area. A deep convolutional neural network (CNN) is designed to regress 6-DOF sensor pose and trained using both RGB image and 3D point cloud information in end-to-end manner. We generate the new input that consists of RGB and range information. After training step, the relocalization system results in the pose of the sensor corresponding to each input when a new input is received. However, most of cases, mobile robot navigation system has successive sensor measurements. In order to improve the localization performance, the output of CNN is used for measurements of the particle filter that smooth the trajectory. We evaluate our relocalization method on real world datasets using a mobile robot platform.
The 5th International Conference on Construction Engineering and Project Management
/
pp.279-286
/
2013
This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.
본 논문은 계절별로 획득된 항공라이다 자료로부터 수고를 추정하여 수관울폐도와 자료융합에 따른 영향을 분석하였다. 수고추정은 수목에서 반사되는 신호(First Return : FR)와 지표에서 반사되는 신호(Last Return : LR)를 추출하고, 영상분할을 통해 수목개체를 가정하여 개체목별 수고를 획득하는 방법을 적용하였다. 계절별 자료를 통해 획득한 각 수고 자료와 융합자료로부터 획득한 수고의 결과를 비교하였으며, 수고측정기를 사용하여 현지 측정을 하여 정확성을 비교하고, 항공라이다를 통해 획득한 자료들을 융합한 결과에 대한 그 활용성을 검토하였다. 실험 결과, 수목개체를 위한 영상분할 결과는 0.5미터 점군간격보다 1미터 간격이 현지조사 결과와 가까웠으며, 수목고의 경우 각 계절별 자료보다 융합자료를 활용한 결과가 현지 측정 결과에 접근하고 있음을 알 수 있었다.
최근 다양한 센서 및 정보통신 기술(ICT: Information & Communications Technology)을 융합·활용한 스마트 팜을 위한 UAS (Unmanned Aerial System)의 활용성이 기대되고 있다. 특히, 다양한 지수를 통한 실외 작물 모니터링 방안으로 효용성이 입증되며 여러 분야에서 연구되고 있다. 본 연구는 벼를 대상으로 자연재해 작물 피해를 분석하고 피해량을 계측하는 것이다. 이를 위해, BG-NIR (Blue Green_near Infrared red) 및 RGB 센서를 통해 데이터를 획득하고 영상해석 및 NDWI (Normalized Difference Water Index) 지수를 활용하여 장마에 의한 작물 피해를 검토한다. 또한, 영상해석 기반 포인트 클라우드 데이터를 생성, 인스펙션 맵을 통해 태풍 전·후 데이터를 비교하여 피해량을 계측한다. 연구결과, NDWI 지수 분석을 통해 벼의 생장 및 장마 피해를 검토하였고, 인스펙션 맵 분석으로 태풍에 의한 피해 면적을 계측하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.