Traffic lights at night are usually framed in the image as bright regions bigger than the real size due to glow effect. Moreover, the colors of lighting region saturate to white. So it is difficult to distinguish between different traffic lights at night. Many related studies have tried to decrease the glow effect in the process of capturing images. Some studies drastically decreased the shutter time of the camera to reduce the adverse effect by the glow. However, this makes the video too dark. This study proposes a new idea which utilizes the glow effect. It examines the outer radial region of traffic light. It presents an algorithm to discriminate the color of traffic light by the analysis of the outer radial region. The advantage of the proposed method is that it can recognize traffic lights in the image captured by an ordinary black box camera. Experimental results using seven short videos show the performance of traffic light recognition reporting the precision of 96.4% and the recall of 98.2%. These results show that the proposed method is valid and effective.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
1996.06c
/
pp.773-779
/
1996
Dried oak mushroom have complex and various visual features. Grading and sorting of dried oak mushrooms has been done by the human expert. Though actions involved in human grading looked simple, a decision making underneath the simple action comes from the result of the complex neural processing of the visual image. Through processing details involved in human visual recognition has not been fully investigated yet, it might say human can recognize objects via one of three ways such as extracting specific features or just image itself without extracting those features or in a combined manner. In most cases, extracting some special quantitative features from the camera image requires complex algorithms and processing of the gray level image requires the heavy computing load. This fact can be worse especially in dealing with nonuniform, irregular and fuzzy shaped agricultural products, resulting in poor performance because of the sensitiveness to the crisp criteria or specific ules set up by algorithms. Also restriction of the real time processing often forces to use binary segmentation but in that case some important information of the object can be lost. In this paper, the neuro net based real time recognition algorithm was proposed without extracting any visual feature but using only the directly captured raw gray images. Specially formated adaptable size of grids was proposed for the network input. The compensation of illumination was also done to accomodate the variable lighting environment. The proposed grading scheme showed very successful results.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.4043-4064
/
2021
Night-time image quality evaluation is an urgent requirement in visual inspection. The lighting environment of night-time results in low brightness, low contrast, loss of detailed information, and colour dissonance of image, which remains a daunting task of delicately evaluating the image quality at night. A new blind quality assessment metric is presented for realistic night-time scenario through a comprehensive consideration of contrast, texture, and colour in this article. To be specific, image blocks' color-gray-difference (CGD) histogram that represents contrast features is computed at first. Next, texture features that are measured by the mean subtracted contrast normalized (MSCN)-weighted local binary pattern (LBP) histogram are calculated. Then statistical features in Lαβ colour space are detected. Finally, the quality prediction model is conducted by the support vector regression (SVR) based on extracted contrast, texture, and colour features. Experiments conducted on NNID, CCRIQ, LIVE-CH, and CID2013 databases indicate that the proposed metric is superior to the compared BIQA metrics.
Artificial intelligence (AI) technology has been evolving to recognize and learn the languages, voice tones, and facial expressions of users so that they can respond to users' emotions in various contexts. Many AI-based services of particular importance in communications with users provide emotional interaction. However, research on nonverbal interaction as a means of expressing emotion in the AI system is still insufficient. We studied the effect of lighting on users' emotional interaction with an AI device, focusing on color and flickering motion. The AI device used in this study expresses emotions with six colors of light (red, yellow, green, blue, purple, and white) and with a three-level flickering effect (high, middle, and low velocity). We studied the responses of 50 men and women in their 20s and 30s to the emotions expressed by the light colors and flickering effects of the AI device. We found that each light color represented an emotion that was largely similar to the user's emotional image shown in a previous color-sensibility study. The rate of flickering of the lights produced changes in emotional arousal and balance. The change in arousal patterns produced similar intensities of all colors. On the other hand, changes in balance patterns were somewhat related to the emotional image in the previous color-sensibility study, but the colors were different. As AI systems and devices are becoming more diverse, our findings are expected to contribute to designing the users emotional with AI devices through lighting.
As power consumption is maximized, research on augmented reality-based monitoring systems for on-site facility managers to maintain and repair power facilities is being actively conducted as individual power brokerages and power production facilities increase. However, in the case of existing augmented reality-based monitoring systems, it is difficult to accurately detect patterns due to problems such as external environment, facility complexity, and interference with the lighting environment, and it is not possible to match various sensing information and service information for power facilities to one pattern. there is a problem. For this reason, since sensor information is matched using a single image pattern for each sensor of a power facility, a plurality of image patterns are required to augment and provide all information. In this paper, we propose a single image pattern arrangement method that matches and provides a plurality of information through an array combination of feature patterns in a single image composed of a plurality of feature patterns.
As supplying of automatic surveillance or patrol systems based on image processing, the needs on object extraction technology from images increases. The extraction is more difficult when the lighting condition is changed from time to time. There are many approaches to extract objects from images excluding shadow. They have a common problem something like loss of object region according with shadow removal. In this paper a restoration method using color information of objects to complement the problem is presented. The usefulness of the method is verified using images taken from different lighting conditions and selected from well-known DB.
최근 가상현실 기술의 주요 연구 동향으로 몰입감을 증가시키는 실감공간 구현구술이 주목 받고 있다. 실감공간 기술이란 서로 다른 공간에 떨어져 있는 사용자가 같은 공간에 있는 효과를 구현하는 기술이다. 본 논문에서는 특히 상호간의 주변 환경을 일치시키는 기술에 중점을 두고, 실시간으로 두 공간의 조명정보를 일치시키는 기술로서 2가지 핵심 내용을 소개한다. 첫째는 비주얼 헐 데이터를 기반으로 고속으로 노말벡터를 추출하는 방법이고, 둘째는 사용자 주변 조명 환경 정보를 반영하는 라이팅 방법이다. 본 논문에서 수행한 첫번째 방법은 비주얼 헐 데이터의 depth존재영역에서 노말맵을 계산하도록 하고, 노말맵을 계산할 때 주변 폴리곤들 기하학적 변화가 심할수록 노말맵 계산에 사용하는 주변 벡터의 선태을 늘리거나 줄이는 방식으로, 불필요한 계산량을 감소시켰다. 본 논문에서 수행한 두번째 방법에서는 주변 조명 정보에서 빛의 세기와 라이팅을 반영할 객체의 반사율의 특성을 고려하여 라이팅에 사용할 광원을 선택적으로 반영하여 불필요한 연산량을 감소시켰다. 종래의 영상기반 라이팅 기술이 사전에 촬영된 영상을 사용하거나 정지영상에 적용되는 연구를 한 반면에 본 논문은 실시간에서 라이팅을 구현하기 위한 시도로서 고속 라이팅 연산 기법을 제시하고 있다. 본 연구의 결과를 이용하면 영상기반 라이팅 연구의 실제적이고도 폭넓은 적용이 가능할 것으로 사료되며 고화질의 콘텐츠 양산에도 기여할 것으로 사료된다.
Since 2016, the VR market has been on the rapid growth. The most critical and arising issue in the VR market is VR contents. That is because it is necessary to develop making techniques and various VR contents to satisfy users' immersion and interaction as much as possible. Therefore, this study focused on VR image contents, conducted domestic and foreign cases of the components of visual and auditory inducement to keep and improve immersion, and thereby tried to find a right direction of visual and auditory inducement. As a result, the visual and auditory components of visual and auditory inducement were found to be photographing, edition, lighting, stitching, graphics, effect, voice actor's narration, dubbing, character voice, background sound, and sound effect; its technical and content components were found to be photographing technique, edition technique, lighting, stitching, graphics and effect, sound and sound effect, and theatric direction based on Mise-en-Scene, lines and narration of characters, and movements of characters and objets. For VR image contents, not only visual and auditory components, but technical and content components are necessary to improve immersion. In the future, it will be necessary to continue to research them.
To increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, a new 2D barcode detection algorithm based on Local Binary Pattern is presented. To locate 2D barcode symbols, a texture analysis scheme based on the Local Binary Pattern is adopted, and a gray-scale projection with sub-pixel operation is utilized to separate the symbol precisely from the input image. Finally, the segmented symbol is normalized using the inverse perspective transformation for the decoding process. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments show that our method is very robust and efficient in detecting the symbol area for the various types of 2D barcodes.
This paper presents a deep learning-based object detection method for recognizing vehicles in images acquired through cameras installed on ceiling of underground parking lot. First, we present an image enhancement method, which improves vehicle detection performance under dark lighting environment. Second, we present a new CNN-based multiscale classifiers for detecting vehicles in images acquired through cameras with fisheye lens. Experiments show that the presented vehicle detector has better performance than the conventional ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.