The purpose of this study is to present objective basic data for environmental design by the quantitative analysis of visual quality emboded in physical environment. For this, as for the front garden of high schools, the spatial image was measured by the S.D. Scale Method, Factor Analysis was proceeded by the principal component analysis and the visual preference was investigated by the Paired Comparision Method. The scale values of plain and unpleasant road surface and external appearance of buildings, which are related to emotions of simpleness fell from straightness and stability, were found to be high. But, except for the road surface of Kyunggi High School, scale values of variables explaining the variation of the quality of materials, level of floor and rythm were generally low. For all green spaces, scale values of variables explaining the degree of pleasantness was found to be generally high. And, those explaining tidiness and characteristics of green spaces were not in the same tendency. But, the green spaces of Youngdong High school can be considered to the space with plenty of visual absorption uniqueness were high. As for the correlation between variables, variables for green spaces(12 and 26) and those for overall view of front garden( 1 and 4) revealed high positive correlation. Also, "order - disorder" and "convenient- incovenient" included in road surface variable can be regarded to have the same meaning since the correlation coefficient between them is very high, 0.7045. Image variables including road surface, external appearance of buildings, green spaces and overall view of front garden showed 91.21~61.08% of total variance. Thus, the remains can be considered to be the error valiance or specific variance. In Fctor I, II and III, main components explaining the road surface image of front gardens are order, hardness, texture, color, gradient and rythm. As for the external appearance of b wilding, variables of color, hardness, stability, peculiality and shape revealed high values of factor load. For all variables, communality was drastically high and ellen values and common variance were found to be very high in Factor I. As for the front gardens, variables explaining volume and peculiarity were found to be the main components of Factor I. In Factor II and III, variables of factor load were tidiness, pleasantness.
In this paper, we propose a new algorithm to improve the contrast ratio, to preserve information of bright regions and to maintain the color of backlight image that appears with a great relative contrast. Backlight images of the natural environment have characteristics for difference of local brightness; the overall image contrast improvement is not easy. To improve the contrast of the backlight images, MSR (Multi-Scale Retinex) algorithm using the existing multi-scale Gaussian filter is applied. However, existing multi-scale Gaussian filter involves color distortion and information loss of bright regions due to excessive contrast enhancement and noise because of the brightness improvement of dark regions. Moreover, it also increases computational complexity due to the use of multi-scale Gaussian filter. In order to solve these problems, a linear MSR is performed that reduces the amount of computation from the HSV color space preventing the color distortion and information loss due to excessive contrast enhancement. It can also remove the noise of the dark regions which is occurred due to the improved contrast through edge preserving filter. Through experimental evaluation of the average color difference comparison of CIELAB color space and the visual assessment, we have confirmed excellent performance of the proposed algorithm compared to conventional MSR algorithm.
Stereo matching has been grabbing the attention of researchers because it plays an important role in computer vision, remote sensing and photogrammetry. Although most methods perform well with small size images, experiments applying them to large-scale data sets under uncontrolled conditions are still lacking. In this paper, we present an empirical study on stereo matching for large-scale high-resolution satellite images. A new method is studied to solve the problem of huge size and memory requirement when dealing with large-scale high resolution satellite images. Integrating the tiling technique with the well-known dynamic programming and coarse-to-fine pyramid scheme as well as using memory wisely, the suggested method can be utilized for huge stereo satellite images. Analyzing 350 points from an image of size of 8192 x 8192, disparity results attain an acceptable accuracy with RMS error of 0.5459. Taking the trade-off between computational aspect and accuracy, our method gives an efficient stereo matching for huge satellite image files.
본 논문에서는 Bayesian 추정법과 신경회로망을 이용한 새로운 결 분할 방법을 제안한다 신경회로망의 입력으로는 다중스케일을 가지는 웨이블릿 계수와 인접한 이웃 웨이블릿 계수들의 문맥정보를 사용하고, 신경회로망의 출력을 사후 확률로 모델링한다. 문맥정보는 HMT(Hidden Markov Tree) 모델을 이용하여 구한다. 제안 방법은 HMT를 이용한 ML(Maximum Likelihood) 분할 보다 더 우수한 결과를 보여준다. 또한 HMT를 이용한 결 분할 방법과 제안 방법을 이용한 결 분할 각각에 HMTseg라고 불리는 다중 스케일 Bayesian 영상 분할 기술을 이용하여 후처리를 행한 결 분할 또한 제안 방법이 우수함을 보여준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1888-1906
/
2024
Aiming at the problems that the edge of melanoma image is fuzzy, the contrast with the background is low, and the hair occlusion makes it difficult to segment accurately, this paper proposes a model MSCNet for melanoma segmentation based on U-net frame. Firstly, a multi-scale pyramid fusion module is designed to reconstruct the skip connection and transmit global information to the decoder. Secondly, the contextural information conduction module is innovatively added to the top of the encoder. The module provides different receptive fields for the segmented target by using the hole convolution with different expansion rates, so as to better fuse multi-scale contextural information. In addition, in order to suppress redundant information in the input image and pay more attention to melanoma feature information, global channel attention mechanism is introduced into the decoder. Finally, In order to solve the problem of lesion class imbalance, this paper uses a combined loss function. The algorithm of this paper is verified on ISIC 2017 and ISIC 2018 public datasets. The experimental results indicate that the proposed algorithm has better accuracy for melanoma segmentation compared with other CNN-based image segmentation algorithms.
Purpose: The principal objective of this study was to identify correlations among elder image, self-efficacy and burden among family caregivers caring for elders with chronic disease. Methods: A total of 187 primary family caregivers caring for frail elders over 65 years of age participated in this study. The data were collected using the Elder Image Scale (EIS), the Self-Efficacy Scale (SES), and the Burden Scale (BS). Correlational analysis was utilized to determine the relationship between EIS, SES, and BS. Results: EIS scores and SES scores were correlated at r=-.188(p=.010), indicating a significant negative relationship between elder image and self-efficacy. SES scores were negatively correlated with the BS scores (r=-.328, p=.000). EIS scores were correlated significantly with BS scores (r=.298, p=.000). Conclusion: These findings support the assertion that perceptions of elders and belief about caregivers themselves are associated with burden.
본 논문에서는 용량성 지문센서의 회색조 이미지를 얻기 위한 새로운 회로를 제안하고 있다. 기존의 회로는 회색조 이미지를 얻기 위해 많은 칩 면적을 차지하는 DAC를 적용하거나 전력소모가 많고 전역 클럭을 적용하는 비휘발성 메모리에 적용되는 승압회로를 픽셀별로 적용하였다. 개선된 전하분할 방식의 용량성 지문센서 감지회로는 뉴런모스(vMOS) 기반의 DLC(down literal circuit) 회로와 단순화된 아날로그 MUX(multiplexor)를 적용하였다. 설계된 감지회로는 0.3V, $0.35{\mu}m$ CMOS공정을 적용하여 동작을 검증하였다. 제안된 회로는 기존의 비교기와 주변회로를 필요로하지 않으므로 단위 픽셀의 레이아웃 면적을 줄이고 이미지의 해상도를 향상 시킬 수 있다.
Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.
In computer vision, single-image super resolution has been an area of research for a significant period. Traditional techniques involve interpolation-based methods such as Nearest-neighbor, Bilinear, and Bicubic for image restoration. Although implementations of convolutional neural networks have provided outstanding results in recent years, efficiency and single model multi-scalability have been its challenges. Furthermore, previous works haven't placed enough emphasis on real-number scalability. Interpolation-based techniques, however, have no limit in terms of scalability as they are able to upscale images to any desired size. In this paper, we propose a convolutional neural network possessing the advantages of the interpolation-based techniques, which is also efficient, deeming it suitable in practical implementations. It consists of convolutional layers applied on the low-resolution space, post-up-sampling along the end hidden layers, and additional layers on high-resolution space. Up-sampling is applied on a multiple channeled feature map via bicubic interpolation using a single model. Experiments on architectural structure, layer reduction, and real-number scale training are executed with results proving efficient amongst multi-scale learning (including scale multi-path-learning) based models.
The purpose of this study was to investigate visual evaluation according to various methods of motif presentation and the value contrast between the motif and background. The instruments developed for this purpose were two sets of stimuli and a response scale. the first set consisted of pattern stimuli. they were eight photographs of floral patterns constructed by using six different motif presentation methods and two different value contrasts. The second set had eight clothing stimuli, photographs of clothings with the above floral patterns. The 7-point sementic differential scale of 19 bipolar adjectives was used as the response scale. The data was analyzed by factor analysis, ANOVA and T-test. The major findings from this study were as follows; 1. Four factors emerged to account for the dimensional structure of the floral pattern image. These factors were attractiveness, tenderness, attention, and maturity. among them attractiveness and tenderness were the major dimensions 2. The patterns and the clothings had no significant difference from each other in terms of attractiveness and tenderness, but in terms of maturity and attention. The pattern presented a cute and sober image, but the clothing presented mature and gorgeous image. 3. methods of motif presentation had significant effects on all the factors. The pattern by shading method gave the most attractive and soft image, the one by line the most soberest, the one by area the most gorgeous, the one by collage the most unattractive, hardest, and cutest, and the one by mosaics the maturest. 4. The value contrast between the motif and background had no significant effects on attractiveness and maturity, but on tenderness and attention. The patterns with a high valued background presented a soft image, but the one with a low valued background a hard image. The patterns with a low valued area presented gorgeous image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.