• Title/Summary/Keyword: Image quality assessment algorithm

Search Result 49, Processing Time 0.025 seconds

An Adaptive Image Quality Assessment Algorithm

  • Sankar, Ravi;Ivkovic, Goran
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.6-13
    • /
    • 2012
  • An improved algorithm for image quality assessment is presented. First a simple model of human visual system, consisting of a nonlinear function and a 2-D filter, processes the input images. This filter has one user-defined parameter, whose value depends on the reference image. This way the algorithm can adapt to different scenarios. In the next step the average value of locally computed correlation coefficients between the two processed images is found. This criterion is closely related to the way in which human observer assesses image quality. Finally, image quality measure is computed as the average value of locally computed correlation coefficients, adjusted by the average correlation coefficient between the reference and error images. By this approach the proposed measure differentiates between the random and signal dependant distortions, which have different effects on human observer. Performance of the proposed quality measure is illustrated by examples involving images with different types of degradation.

Directional Interpolation Based on Improved Adaptive Residual Interpolation for Image Demosaicking

  • Liu, Chenbo
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1479-1494
    • /
    • 2020
  • As an important part of image processing, image demosaicking has been widely researched. It is especially necessary to propose an efficient interpolation algorithm with good visual quality and performance. To improve the limitations of residual interpolation (RI), based on RI algorithm, minimalized-Laplacian RI (MLRI), and iterative RI (IRI), this paper focuses on adaptive RI (ARI) and proposes an improved ARI (IARI) algorithm which obtains more distinct R, G, and B colors in the images. The proposed scheme fully considers the brightness information and edge information of the image. Since the ARI algorithm is not completely adaptive, IARI algorithm executes ARI algorithm twice on R and B components according to the directional difference, which surely achieves an adaptive algorithm for all color components. Experimental results show that the improved method has better performance than other four existing methods both in subjective assessment and objective assessment, especially in the complex edge area and color brightness recovery.

A No-Reference Adaptive Metric for Digital Image Quality Assessment

  • Lim, Jin-Young;Kang, Dong-Wook;Kim, Ki-Doo;Jung, Kyeong-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.316-320
    • /
    • 2009
  • In this paper, a reference-free perceptual quality metric is proposed for image assessment. It measures the amount of overall blockiness and blurring in the image. And edge-oriented artifacts, such as ringing, mosaic and staircase noise are also considered. In order to give a single quality score, the individual artifact scores are adaptively combined according to the difference between the edge-oriented artifacts and other artifacts. The quality score obtained by the proposed algorithm shows strong correlation with the MOS values by VQEG.

  • PDF

No-reference Perceptual Quality Assessment of Digital Image (디지털 영상의 인지적 무참조 화질 평가 방법)

  • Lim, Jin-Young;Chang, Ho-Seok;Kang, Dong-Wook;Kim, Ki-Doo;Jung, Kyeong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.849-858
    • /
    • 2008
  • In this paper, a no-reference perceptual metric is proposed for image quality assessment. It measures the amount of overall blockiness and blurring of the image and evaluates the amount of ringing, staircase, and mosaic noises around the strong edges. Finally, the individual scores are combined by a fuzzy integral to generate the final quality score of the image. The quality scores obtained by the proposed algorithm show strong relationship with the MOS(Mean Opinion Score) values by experts.

A Performance Comparison Study of Lesion Detection Model according to Gastroscopy Image Quality (위 내시경 이미지 품질에 따른 병변 검출 모델의 성능 비교 연구)

  • Yul Hee Lee;Young Jae Kim;Kwang Gi Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.118-124
    • /
    • 2023
  • Many recent studies have reported that the quality of input learning data was vital to the detection of regions of interest. However, due to a lack of research on the quality of learning data on lesion detetcting using gastroscopy, we aimed to quantify the impact of quality difference in endoscopic images to lesion detection models using Image Quality Assessment (IQA) algorithms. Through IQA methods such as BRISQUE (Blind/Referenceless Image Spatial Quality Evaluation), Laplacian Score, and PSNR (Peak Signal-To-Noise) algorithm on 430 sheets of high quality data (HQD) and 430 sheets of low quality data (PQD), we showed that there were significant differences between high and low quality images in lesion detecting through BRISQUE and Laplacian scores (p<0.05). The PSNR value showed 10.62±1.76 dB on average, illustrating the lower lesion detection performance of PQD than HQD. In addition, F1-Score of HQD showed higher detection performance at 77.42±3.36% while F1-Score of PQD showed 66.82±9.07%. Through this study, we hope to contribute to future gastroscopy lesion detection assistance systems that involve IQA algorithms by emphasizing the importance of using high quality data over lower quality data.

Target-to-Clutter Ratio Enhancement of Images in Through-the-Wall Radar Using a Radiation Pattern-Based Delayed-Sum Algorithm

  • Lim, Youngjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.405-410
    • /
    • 2014
  • In this paper, we compare the quality of images reconstructed by a conventional delayed-sum (DS) algorithm and radiation pattern-based DS algorithm. In order to evaluate the quality of images, we apply the target-to-clutter ratio (TCR), which is commonly used in synthetic aperture radar (SAR) image assessment. The radiation pattern-based DS algorithm enhances the TCR of the image by focusing the target signals and preventing contamination of the radar scene. We first consider synthetic data obtained through GprMax2D/3D, a finite-difference time-domain (FDTD) forward solver. Experimental data of a 2-GHz bandwidth stepped-frequency signal are collected using a vector network analyzer (VNA) in an anechoic chamber setup. The radiation pattern-based DS algorithm shows a 6.7-dB higher TCR compared to the conventional DS algorithm.

Noise reduction in low-dose positron emission tomography with adaptive parameter estimation in sinogram domain

  • Kyu Bom Kim;Yeonkyeong Kim;Kyuseok Kim;Su Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4127-4133
    • /
    • 2024
  • Noise reduction in low-dose positron emission tomography (PET) is a well-researched topic aimed at reducing patient radiation doses and improving diagnosis. Software-based noise reduction mainly improves the contrast between regions by reducing the variation of the acquired image. However, it should be performed under appropriate parameters to reduce discrimination. We propose a method that derives optimal noise-reduction parameters using the multi-scale structural similarity index measure and visual information fidelity, which are metrics for image quality assessment. Simulation and experimental studies demonstrated the viability of the proposed algorithm. The contrast-to-noise ratio value of the denoised reconstruction slice, which was used as the optimal parameter, increased approximately three times compared to that of the low-dose slice while preserving the resolution. The results indicate that the proposed method successfully predicted the parameters according to the noise-reduction algorithm and PET system conditions in the sinogram domain. The proposed algorithm should help prevent misdiagnosis and provide standardized medical images for clinical application by performing appropriate noise reduction.

Digital Video Quality Assessment using the Statistics of Boundary Strength of H.264/AVC (H.264/AVC의 경계 세기 통계를 이용한 디지털 비디오에서의 객관적 화질 측정)

  • Jung, Kwang-Su;Lee, Seon-Oh;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.64-73
    • /
    • 2008
  • In this paper, we propose a novel objective video quality assessment method from encoded H.264/AVC.. Conventional algorithms have been proposed to assess video/image quality with image frames reconstructed in a decoder side. On the other hand, the proposed assessment is conducted with the syntax elements which are embedded in a bitstream. The proposed BS-based algorithm makes use of the statistics of boundary strength(BS) which are employed in the H.264/AVC. The proposed algorithm has lower computational complexity than conventional methods, EPSNR and Blockiness, resulting that it can accomplish assessment of the video quality in real time. Furthermore, the accuracy of the proposed video quality assessment is about 32% and 65% better than several conventional algorithms.

Hybrid No-Reference Video Quality Assessment Focusing on Codec Effects

  • Liu, Xingang;Chen, Min;Wan, Tang;Yu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.592-606
    • /
    • 2011
  • Currently, the development of multimedia communication has progressed so rapidly that the video program service has become a requirement for ordinary customers. The quality of experience (QoE) for the visual signal is of the fundamental importance for numerous image and video processing applications, where the goal of video quality assessment (VQA) is to automatically measure the quality of the visual signal in agreement with the human judgment of the video quality. Considering the codec effect to the video quality, in this paper an efficient non-reference (NR) VQA algorithm is proposed which estimates the video quality (VQ) only by utilizing the distorted video signal at the destination. The VQA feature vectors (FVs) which have high relationships with the subjective quality of the distorted video are investigated, and a hybrid NR VQA (HNRVQA) function is established by considering the multiple FVs. The simulation results, testing on the SDTV programming provided by VCEG Phase I, show that the proposed algorithm can represent the VQ accurately, and it can be used to replace the subjective VQA to measure the quality of the video signal automatically at the destinations.

No-reference Sharpness Index for Scanning Electron Microscopy Images Based on Dark Channel Prior

  • Li, Qiaoyue;Li, Leida;Lu, Zhaolin;Zhou, Yu;Zhu, Hancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2529-2543
    • /
    • 2019
  • Scanning electron microscopy (SEM) image can link with the microscopic world through reflecting interaction between electrons and materials. The SEM images are easily subject to blurring distortions during the imaging process. Inspired by the fact that dark channel prior captures the changes to blurred SEM images caused by the blur process, we propose a method to evaluate the SEM images sharpness based on the dark channel prior. A SEM image database is first established with mean opinion score collected as ground truth. For the quality assessment of the SEM image, the dark channel map is generated. Since blurring is typically characterized by the spread of edge, edge of dark channel map is extracted. Then noise is removed by an edge-preserving filter. Finally, the maximum gradient and the average gradient of image are combined to generate the final sharpness score. The experimental results on the SEM blurred image database show that the proposed algorithm outperforms both the existing state-of-the-art image sharpness metrics and the general-purpose no-reference quality metrics.