• Title/Summary/Keyword: Image pixel

Search Result 2,503, Processing Time 0.03 seconds

Dose and Image Assessment according to Radiologic Factors Variation at Digital Humerus X-ray Examination (디지털 환경에서 Humerus 검사 시 촬영인자 변화에 따른 선량 및 화질 평가)

  • Kim, Seong Min;Hong, Seon Sook;Lee, Kwan Sup;Ha, Dong Yun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • Purpose : We aim at presenting the optimum radiologic factor through the evaluation of dose variation and of image quality through the use of a grid in Humerus examination and the change of dose because of the change of radiologic factor. Materials and Methods : We divided it in 3 cases: when using a grid or not and when using IP(Image Plate) in a digital system. Also, as fixing kVp to 70kVp it changed mAs, and fixing mAs to 10 it changed kVp, we put up resolution chart and Burger rose phantom on the acrylic phantom of 7cm (the same level of Humerus) to evaluate the dose and image. We used Image J program to evaluate the quantitative resolution of the obtained image, and made the qualitative evaluation and statistical analysis of the image saved in PACS for 20 radiologic technologist with more than 10 years of experience in order of evaluate its contrast. We used SPSS10(SPSS Inc. Chicago, Illinois) for statistical analysis. Results : We observed the analytic result of resolution by the change of kVp that it was $4.539dGycm^2$ in 60kVp and $757.472dGycm^2$ in 75kVp, which increased about 64.6% of dose, while for the resolution it had the pixel value 30.7% better with 851 in 60kVp than 651 in 75kVp. Also, we analyzed the result of resolution by the change of mAs that it was $3.106dGycm^2$ in 5mAs, and $12.470dGycm^2$ in 20mAs, which increased about 400% of dose, while for the resolution DR had 678 in 5mAs, and 724 in 20mAs that increased about 6.8% of resolution. We made the qualitative evaluation of contrast by the change of kVp that DR showed the higher quality than CR, but the contrast by the change of kVp had no special different at the moment of visual evaluation, nor statistically significant difference(P>0.05). We observed the qualitative evaluation of contraste by the change of mAs that the contrast increased as DR increased mAs, and had statistically significant difference(P<0.05). On the other hand, CR had no significant difference for more than 10mAs nor statistically significant difference(P>0.05). Conclusion : In case of some patients with radiographic exposure by the repeated examination such as emergent patient or Follow up patient, they are considered to try to limit the use of a grid, to set kVp under 65kVp in fixed mode, to select less than 10mAs and to reduce the possibility of patient being bombed.

  • PDF

Development of 360° Omnidirectional IP Camera with High Resolution of 12Million Pixels (1200만 화소의 고해상도 360° 전방위 IP 카메라 개발)

  • Lee, Hee-Yeol;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.268-271
    • /
    • 2017
  • In this paper, we propose the development of high resolution $360^{\circ}$ omnidirectional IP camera with 12 million pixels. The proposed 12-megapixel high-resolution $360^{\circ}$ omnidirectional IP camera consists of a lens unit with $360^{\circ}$ omnidirectional viewing angle and a 12-megapixel high-resolution IP camera unit. The lens section of $360^{\circ}$ omnidirectional viewing angle adopts the isochronous lens design method and the catadioptric facet production method to obtain the image without peripheral distortion which is inevitably generated in the fisheye lens. The 12 megapixel high-resolution IP camera unit consists of a CMOS sensor & ISP unit, a DSP unit, and an I / O unit, and converts the image input to the camera into a digital image to perform image distortion correction, image correction and image compression And then transmits it to the NVR (Network Video Recorder). In order to evaluate the performance of the proposed 12-megapixel high-resolution $360^{\circ}$ omnidirectional IP camera, 12.3 million pixel image efficiency, $360^{\circ}$ omnidirectional lens angle of view, and electromagnetic certification standard were measured.

Multi License Plate Recognition System using High Resolution 360° Omnidirectional IP Camera (고해상도 360° 전방위 IP 카메라를 이용한 다중 번호판 인식 시스템)

  • Ra, Seung-Tak;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.412-415
    • /
    • 2017
  • In this paper, we propose a multi license plate recognition system using high resolution $360^{\circ}$ omnidirectional IP camera. The proposed system consists of a planar division part of $360^{\circ}$ circular image and a multi license plate recognition part. The planar division part of the $360^{\circ}$ circular image are divided into a planar image with enhanced image quality through processes such as circular image acquisition, circular image segmentation, conversion to plane image, pixel correction using color interpolation, color correction and edge correction in a high resolution $360^{\circ}$ omnidirectional IP Camera. Multi license plate recognition part is through the multi-plate extraction candidate region, a multi-plate candidate area normalized and restore, multiple license plate number, character recognition using a neural network in the process of recognizing a multi-planar imaging plates. In order to evaluate the multi license plate recognition system using the proposed high resolution $360^{\circ}$ omnidirectional IP camera, we experimented with a specialist in the operation of intelligent parking control system, and 97.8% of high plate recognition rate was confirmed.

The usability of the MR Breast perfusion image and Time-Signal Intensity curve in Breast cancer patients (유방암 환자에서 MR Breast perfusion 영상과 시간-신호강도 곡선의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4068-4074
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of MR Breast perfusion image and time-signal intensity curve in patients diagnosed with breast cancer. We selected on 20 patients who were histologically diagnosed to have invasive ductal carcinoma (IDC) from March 2009 to December 2010. First, the Breast perfusion mapping image was reconstructed after obtaining the dynamic contrast enhancement image. The reconstructed image measured the slope, maximal relative enhancement, and time to peak on the detail including the lesion region, normal region, back ground region after obtaining the time-signal intensity curve. The lesion region and normal and slope of the back ground part were measured with the quantitive analytical method about the research and the average was compared and was analyze. In the qualitative analysis, the signal strength of each pixel was analyze with the macroscopic and being high it was low, the medium (2) performed the division of (a) by the three-point standard and the average was measured. The findings from the quantitative image analysis are the following: In the lesion region, the slope and maximal relative enhancement were the highestest among and the time to peak was the highestest in the back ground region. In the qualitative analysis, the breast perfusion image showed a diagnostic efficiency.

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

Development of Bone Metastasis Detection Algorithm on Abdominal Computed Tomography Image using Pixel Wise Fully Convolutional Network (픽셀 단위 컨볼루션 네트워크를 이용한 복부 컴퓨터 단층촬영 영상 기반 골전이암 병변 검출 알고리즘 개발)

  • Kim, Jooyoung;Lee, Siyoung;Kim, Kyuri;Cho, Kyeongwon;You, Sungmin;So, Soonwon;Park, Eunkyoung;Cho, Baek Hwan;Choi, Dongil;Park, Hoon Ki;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.321-329
    • /
    • 2017
  • This paper presents a bone metastasis Detection algorithm on abdominal computed tomography images for early detection using fully convolutional neural networks. The images were taken from patients with various cancers (such as lung cancer, breast cancer, colorectal cancer, etc), and thus the locations of those lesions were varied. To overcome the lack of data, we augmented the data by adjusting the brightness of the images or flipping the images. Before the augmentation, when 70% of the whole data were used in the pre-test, we could obtain the pixel-wise sensitivity of 18.75%, the specificity of 99.97% on the average of test dataset. With the augmentation, we could obtain the sensitivity of 30.65%, the specificity of 99.96%. The increase in sensitivity shows that the augmentation was effective. In the result obtained by using the whole data, the sensitivity of 38.62%, the specificity of 99.94% and the accuracy of 99.81% in the pixel-wise. lesion-wise sensitivity is 88.89% while the false alarm per case is 0.5. The results of this study did not reach the level that could substitute for the clinician. However, it may be helpful for radiologists when it can be used as a screening tool.

Stereo Matching Using Distance Trasnform and 1D Array Kernel (거리변환과 1차원 배열을 이용한 적응적 스테레오 정합)

  • Chang, Yong-Jun;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • A stereo matching method is one of the ways to obtain a depth value from two dimensional images. This method estimates the depth value of target images using stereo images which have two different viewpoints. In the result of stereo matching, the depth value is represented by a disparity value. The disparity means a distance difference between a current pixel in one side of stereo images and its corresponding point in the other side of stereo images. The stereo matching in a homogeneous region is always difficult to find corresponding points because there are no textures in that region. In this paper, we propose a novel matching equation using the distance transform to estimate accurate disparity values in the homogeneous region. The distance transform calculates pixel distances from the edge region. For this reason, pixels in the homogeneous region have specific values when we apply this transform to pixels in that region. Therefore, the stereo matching method using the distance transform improves the matching accuracy in the homogeneous regions. In addition, we also propose an adaptive matching cost computation using a kernel of one dimensional array depending on the characteristic of regions in the image. In order to aggregate the matching cost, we apply a cross-scale cost aggregation method to our proposed method. As a result, the proposed method has a lower average error rate than that of the conventional method in all regions.

Design of High-Performance Motion Estimation Circuit for H.264/AVC Video CODEC (H.264/AVC 동영상 코덱용 고성능 움직임 추정 회로 설계)

  • Lee, Seon-Young;Cho, Kyeong-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.53-60
    • /
    • 2009
  • Motion estimation for H.264/AVC video CODEC is very complex and requires a huge amount of computational efforts because it uses multiple reference frames and variable block sizes. We propose the architecture of high-performance integer-pixel motion estimation circuit based on fast algorithms for multiple reference frame selection, block matching, block mode decision and motion vector estimation. We also propose the architecture of high-performance interpolation circuit for sub-pixel motion estimation. We described the RTL circuit in Verilog HDL and synthesized the gate-level circuit using 130nm standard cell library. The integer-pixel motion estimation circuit consists of 77,600 logic gates and four $32\times8\times32$-bit dual-port SRAM's. It has tile maximum operating frequency of 161MHz and can process up to 51 D1 (720$\times$480) color in go frames per second. The fractional motion estimation circuit consists of 22,478 logic gates. It has the maximum operating frequency of 200MHz and can process up to 69 1080HD (1,920$\times$1,088) color image frames per second.

Performance Analysis of Matching Cost Functions of Stereo Matching Algorithm for Making 3D Contents (3D 콘텐츠 생성에서의 스테레오 매칭 알고리즘에 대한 매칭 비용 함수 성능 분석)

  • Hong, Gwang-Soo;Jeong, Yeon-Kyu;Kim, Byung-Gyu
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • Calculating of matching cost is an important for efficient stereo matching. To investigate the performance of matching process, the concepts of the existing methods are introduced. Also we analyze the performance and merits of them. The simplest matching costs assume constant intensities at matching image locations. We consider matching cost functions which can be distinguished between pixel-based and window-based approaches. The Pixel-based approach includes absolute differences (AD) and sampling-intensitive absolute differences (BT). The window-based approach includes the sum of the absolute differences, the sum of squared differences, the normalized cross-correlation, zero-mean normalized cross-correlation, census transform, and the absolute differences census transform (AD-Census). We evaluate matching cost functions in terms of accuracy and time complexity. In terms of the accuracy, AD-Census method shows the lowest matching error ratio (the best solution). The ZNCC method shows the lowest matching error ratio in non-occlusion and all evaluation part. But it performs high matching error ratio at the discontinuities evaluation part due to blurring effect in the boundary. The pixel-based AD method shows a low complexity in terms of time complexity.

Adaptive Thresholding Method Using Zone Searching Based on Representative Points for Improving the Performance of LCD Defect Detection (LCD 결함 검출 성능 개선을 위한 대표점 기반의 영역 탐색을 이용한 적응적 이진화 기법)

  • Kim, Jin-Uk;Ko, Yun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.689-699
    • /
    • 2016
  • As the demand for LCD increases, the importance of inspection equipment for improving the efficiency of LCD production is continuously emphasized. The pattern inspection apparatus is one that detects minute defects of pattern quickly using optical equipment such as line scan camera. This pattern inspection apparatus makes a decision on whether a pixel is a defect or not using a single threshold value in order to meet constraint of real time inspection. However, a method that uses an adaptive thresholding scheme with different threshold values according to characteristics of each region in a pattern can greatly improve the performance of defect detection. To apply this adaptive thresholding scheme it has to be known that a certain pixel to be inspected belongs to which region. Therefore, this paper proposes a region matching algorithm that recognizes the region of each pixel to be inspected. The proposed algorithm is based on the pattern matching scheme with the consideration of real time constraint of machine vision and implemented through GPGPU in order to be applied to a practical system. Simulation results show that the proposed method not only satisfies the requirement for processing time of practical system but also improves the performance of defect detection.