• 제목/요약/키워드: Image machine learning

검색결과 595건 처리시간 0.026초

Face Recognition using Correlation Filters and Support Vector Machine in Machine Learning Approach

  • Long, Hoang;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.528-537
    • /
    • 2021
  • Face recognition has gained significant notice because of its application in many businesses: security, healthcare, and marketing. In this paper, we will present the recognition method using the combination of correlation filters (CF) and Support Vector Machine (SVM). Firstly, we evaluate the performance and compared four different correlation filters: minimum average correlation energy (MACE), maximum average correlation height (MACH), unconstrained minimum average correlation energy (UMACE), and optimal-tradeoff (OT). Secondly, we propose the machine learning approach by using the OT correlation filter for features extraction and SVM for classification. The numerical results on National Cheng Kung University (NCKU) and Pointing'04 face database show that the proposed method OT-SVM gets higher accuracy in face recognition compared to other machine learning methods. Our approach doesn't require graphics card to train the image. As a result, it could run well on a low hardware system like an embedded system.

학습이론을 통한 모양 객체 분석 (Shape Object Analysis using Machine Learning)

  • 최영관;서민형;박장춘
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.350-352
    • /
    • 1999
  • 하위레벨 이미지프로세싱(Low-Level Image Processing)과 이미지인식과 해석을 주로하는 상위레벨 이미지프로세싱(High-Level Image Processing)의 접목은 현존하는 기술과 연구소서는 상대적으로 접목이 힘들며 아직까지도 많은 연구가 진행되고 있다. 후자에 더 가까운 접근을 위해서 본 논문에서는 특정 이미지를 인식하는 과정에서 모양-기반 객체(Shaped-Based Object)와 기계학습(Machine Learning) 이론을 바탕으로 두 분야의 연관을 시도하였다. 이미지 내의 객체에 대한 기하학적인 특징을 얻기 위해서 모양-기반의 특징값 추출방법을 제시하고 있으며, 보다 발전된 인식을 위해서 기계학습이론을 적용시키고 있다.

  • PDF

기계 학습을 활용한 이미지 결함 검출 모델 개발 (Development of Image Defect Detection Model Using Machine Learning)

  • 이남영;조혁현;정희택
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.513-520
    • /
    • 2020
  • 최근 기계 학습을 활용한 비전 검사 시스템의 개발이 활발해지고 있다. 본 연구는 기계 학습을 활용한 결함 검사 모델을 개발하고자 한다. 이미지에 대한 결함 검출 문제는 기계 학습에 있어 지도 학습 방법인 분류 문제에 해당한다. 본 연구에서는 특징을 자동 추출하는 알고리즘과 특징을 추출하지 않는 알고리즘을 기반으로 결함 검출 모델을 개발한다. 특징을 자동 추출하는 알고리즘으로 1차원 합성곱 신경망과 2차원 합성곱 신경망을 활용하였으며, 특징을 추출하지 않는 알고리즘으로 다중 퍼셉트론, 서포트 벡터 머신을 활용하였다. 4가지 모델을 기반으로 결함 검출 모델을 개발하였고 이들의 정확도와 AUC를 기반으로 성능 비교하였다. 이미지 분류는 합성곱 신경망을 활용한 모델 개발이 일반적임에도, 본 연구에서 이미지의 화소를 RGB 값으로 변환하여 서포트 벡터 머신 모델을 개발할 때 높은 정확도와 AUC를 얻을 수 있었다.

기계학습 기반의 인포그래픽 자동 추천 시스템 (Automated infographic recommendation system based on machine learning)

  • 김형균;이상희
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.17-22
    • /
    • 2021
  • 본 논문에서는 기존의 인포그래픽 제작방식을 개선하기 위하여 기계학습 기반의 인포그래픽 자동 추천 시스템을 제안하였다. 이 시스템은 복수의 인포그래픽 이미지를 기계학습하는 부분과 사용자의 기초자료 입력만으로 인포그래픽을 인공지능으로 자동 추천하는 부분으로 구성된다. 추천된 인포그랙픽은 라이브러리 형태로 제공되고, 드래그 & 드롭방식으로 추가적인 자료의 입력이 가능하게 된다. 또한, 입력한 자료의 크기에 따라 인포그래픽 이미지가 동적으로 조절되도록 설계하였다. 기계학습 기반의 인포그래픽 자동 추천 과정을 분석한 결과 레이아웃과 키워드에 대한 일치 성공율은 매우 높고, 타입에 대한 일치 성공률은 다소 낮게 나타났다. 추후 인포그래픽 부분별 이미지 타입에 대한 일치 성공률을 향상시키기 위한 연구가 필요할 것이다.

무작위 생성 심층신경망 기반 유기발광다이오드 흑점 성장가속 전산모사를 통한 소자 변수 추출 (Extraction of the OLED Device Parameter based on Randomly Generated Monte Carlo Simulation with Deep Learning)

  • 유승열;박일후;김규태
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.131-135
    • /
    • 2021
  • Numbers of studies related to optimization of design of organic light emitting diodes(OLED) through machine learning are increasing. We propose the generative method of the image to assess the performance of the device combining with machine learning technique. Principle parameter regarding dark spot growth mechanism of the OLED can be the key factor to determine the long-time performance. Captured images from actual device and randomly generated images at specific time and initial pinhole state are fed into the deep neural network system. The simulation reinforced by the machine learning technique can predict the device parameters accurately and faster. Similarly, the inverse design using multiple layer perceptron(MLP) system can infer the initial degradation factors at manufacturing with given device parameter to feedback the design of manufacturing process.

이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현 (Adopting and Implementation of Decision Tree Classification Method for Image Interpolation)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

머신 러닝을 이용한 영상 특징 기반 전기차 검출 및 분류 시스템 (Image Feature-based Electric Vehicle Detection and Classification System Using Machine Learning)

  • 김상혁;강석주
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1092-1099
    • /
    • 2017
  • This paper proposes a novel way of vehicle detection and classification based on image features. There are two main processes in the proposed system, which are database construction and vehicle classification processes. In the database construction, there is a tight censorship for choosing appropriate images of the training set under the rigorous standard. These images are trained using Haar features for vehicle detection and histogram of oriented gradients extraction for vehicle classification based on the support vector machine. Additionally, in the vehicle detection and classification processes, the region of interest is reset using a number plate to reduce complexity. In the experimental results, the proposed system had the accuracy of 0.9776 and the $F_1$ score of 0.9327 for vehicle classification.

Deep Learning in MR Image Processing

  • Lee, Doohee;Lee, Jingu;Ko, Jingyu;Yoon, Jaeyeon;Ryu, Kanghyun;Nam, Yoonho
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권2호
    • /
    • pp.81-99
    • /
    • 2019
  • Recently, deep learning methods have shown great potential in various tasks that involve handling large amounts of digital data. In the field of MR imaging research, deep learning methods are also rapidly being applied in a wide range of areas to complement or replace traditional model-based methods. Deep learning methods have shown remarkable improvements in several MR image processing areas such as image reconstruction, image quality improvement, parameter mapping, image contrast conversion, and image segmentation. With the current rapid development of deep learning technologies, the importance of the role of deep learning in MR imaging research appears to be growing. In this article, we introduce the basic concepts of deep learning and review recent studies on various MR image processing applications.

Support Vector Machine Learning for Region-Based Image Retrieval with Relevance Feedback

  • Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.700-702
    • /
    • 2007
  • We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.

  • PDF

Centralized Machine Learning Versus Federated Averaging: A Comparison using MNIST Dataset

  • Peng, Sony;Yang, Yixuan;Mao, Makara;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.742-756
    • /
    • 2022
  • A flood of information has occurred with the rise of the internet and digital devices in the fourth industrial revolution era. Every millisecond, massive amounts of structured and unstructured data are generated; smartphones, wearable devices, sensors, and self-driving cars are just a few examples of devices that currently generate massive amounts of data in our daily. Machine learning has been considered an approach to support and recognize patterns in data in many areas to provide a convenient way to other sectors, including the healthcare sector, government sector, banks, military sector, and more. However, the conventional machine learning model requires the data owner to upload their information to train the model in one central location to perform the model training. This classical model has caused data owners to worry about the risks of transferring private information because traditional machine learning is required to push their data to the cloud to process the model training. Furthermore, the training of machine learning and deep learning models requires massive computing resources. Thus, many researchers have jumped to a new model known as "Federated Learning". Federated learning is emerging to train Artificial Intelligence models over distributed clients, and it provides secure privacy information to the data owner. Hence, this paper implements Federated Averaging with a Deep Neural Network to classify the handwriting image and protect the sensitive data. Moreover, we compare the centralized machine learning model with federated averaging. The result shows the centralized machine learning model outperforms federated learning in terms of accuracy, but this classical model produces another risk, like privacy concern, due to the data being stored in the data center. The MNIST dataset was used in this experiment.