• Title/Summary/Keyword: Image flip

Search Result 56, Processing Time 0.027 seconds

Shape Recognition of a BGA Ball using Ring Illumination (링 조명에 의한 BGA 볼의 3차원 형상 인식)

  • Kim, Jong Hyeong;Nguyen, Chanh D.Tr.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.960-967
    • /
    • 2013
  • Shape recognition of solder ball bumps in a BGA (Ball Grid Array) is an important issue in flip chip bonding technology. In particular, the semiconductor industry has required faster and more accurate inspection of micron-size solder bumps in flip chip bonding as the density of balls has increased dramatically. The difficulty of this issue comes from specular reflection on the metal ball. Shape recognition of a metal ball is a very realproblem for computer vision systems. Specular reflection of the metal ball appears, disappears, or changes its image abruptly due to tiny movementson behalf of the viewer. This paper presents a practical shape recognition method for three dimensional (3-D) inspection of a BGA using a 5-step ring illumination device. When the ring light illuminates the balls, distinctive specularity images of the balls, which are referred to as "iso-slope contours" in this paper, are shown. By using a mathematical reflectance model, we can drive the 3-D shape information of the ball in aquantitative manner. The experimental results show the usefulness of the method for industrial application in terms of time and accuracy.

An Investigation on the Undentanding of Spatial Sense of Elementary School Students (초등학생들의 공간감각 이해능력 실태조사)

  • Lee, Sung-Mi;Pang, Jeong-Suk
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.273-292
    • /
    • 2007
  • The purpose of this study was to find out how second, fourth and sixth graders understood the main contents related to spatial sense in the Seventh National Mathematics Curriculum. For this purpose, this study examined students' understanding of the main contents of congruence transformation (slide, flip, turn), mirror symmetry, cubes, congruence and symmetry. An investigation was conducted and the subjects included 483 students. The main results are as follows. First, with regards to congruence transformation, whereas students had high percentages of correct answers on questions concerning slide, they had lower percentages on questions concerning turn. Percentages of correct answers on flip questions had significant differences among the three grades. In addition, most students experienced difficulties in describing the changes of shapes. Second, students understood the fact that the right and the left of an image in a mirror are exchanged, but they had poor overall understanding of mirror symmetry. The more complicated the cubes, the lower percentages of correct answers. Third, students had a good understanding of congruences, but they had difficulties in finding out congruent figures. Lastly, they had a poor understanding of symmetry and, in particular, didn't distinguish a symmetric figure of a line from a symmetric figure of a point.

  • PDF

A Design of DisplayPort AUX Channel (디스플레이포트 인터페이스의 AUX 채널 설계)

  • Cha, Seong-Bok;Yoon, Kwang-Hee;Kim, Tae-Ho;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper presents an implementation of the DisplayPort AUX(Auxiliary) Channel. DisplayPort uses Main link, AUX Channel and Hot Plug Detect line to transfer the video & audio data. For isochronous transport service, source device converts to image and audio data which are to be transported through the Main Link and transports the restructured image and audio data to sink device. The AUX Channel provides link service and device service for discovering, initializing and maintaining the Main link. Hot Plug Detect line is used to confirm the connection between source device and sink device. The AUX Channel is implemented with 3315 LUTs(Look Up Table), 1466 Flip Flops and 168.782MHz max speed synthesized using Xilinx ISE 9.2i at SoC Master3.

Low area field-programmable gate array implementation of PRESENT image encryption with key rotation and substitution

  • Parikibandla, Srikanth;Alluri, Sreenivas
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1113-1129
    • /
    • 2021
  • Lightweight ciphers are increasingly employed in cryptography because of the high demand for secure data transmission in wireless sensor network, embedded devices, and Internet of Things. The PRESENT algorithm as an ultralightweight block cipher provides better solution for secure hardware cryptography with low power consumption and minimum resource. This study generates the key using key rotation and substitution method, which contains key rotation, key switching, and binary-coded decimal-based key generation used in image encryption. The key rotation and substitution-based PRESENT architecture is proposed to increase security level for data stream and randomness in cipher through providing high resistance to attacks. Lookup table is used to design the key scheduling module, thus reducing the area of architecture. Field-programmable gate array (FPGA) performances are evaluated for the proposed and conventional methods. In Virtex 6 device, the proposed key rotation and substitution PRESENT architecture occupied 72 lookup tables, 65 flip flops, and 35 slices which are comparably less to the existing architecture.

3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle (3T MR 스핀에코 T1강조영상에서 적정의 숙임각)

  • Bae, Sung-Jin;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • Purpose : This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). Materials and Method : T1-weighted images of the cerebrum of brain were obtained from 50$^\circ$ to 130$^\circ$ FA with 10$^\circ$ interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp ($\frac{-TR}{T1}$) and Ernst angle cos $\theta$ = exp ($\frac{-TR}{T1}$). Results : The SNR of WM at 130$^\circ$ FA is approximately 1.6 times higher than the SNR of WM at 50$^\circ$. The SNR of GM at 130$^\circ$ FA is approximately 1.9 times higher than the SNR of GM at 50$^\circ$. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120$^\circ$ FA, the SNR of GM started decreasing at less than 110$^\circ$. The highest SNRs of WM and GM were obtained at 130$^\circ$ FA. The highest CNRs, however, were obtained at 80$^\circ$ FA. Conclusion : Although SNR increased with the change of FA values from 50$^\circ$ to 130$^\circ$ at 3T SE T1WI, CNR was higher at 80$^\circ$ FA than at the usually used 90$^\circ$ FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  • PDF

Fabrication of [320×256]-FPA Infrared Thermographic Module Based on [InAs/GaSb] Strained-Layer Superlattice ([InAs/GaSb] 응력 초격자에 기초한 [320×256]-FPA 적외선 열영상 모듈 제작)

  • Lee, S.J.;Noh, S.K.;Bae, S.H.;Jung, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • An infrared thermographic imaging module of [$320{\times}256$] focal-plane array (FPA) based on [InAs/GaSb] strained-layer superlattice (SLS) was fabricated, and its images were demonstrated. The p-i-n device consisted of an active layer (i) of 300-period [13/7]-ML [InAs/GaSb]-SLS and a pair of p/n-electrodes of (60/115)-period [InAs:(Be/Si)/GaSb]-SLS. FTIR photoresponse spectra taken from a test device revealed that the peak wavelength (${\lambda}_p$) and the cutoff wavelength (${\lambda}_{co}$) were approximately $3.1/2.7{\mu}m$ and $3.8{\mu}m$, respectively, and it was confirmed that the device was operated up to a temperature of 180 K. The $30/24-{\mu}m$ design rule was applied to single pixel pitch/mesa, and a standard photolithography was introduced for [$320{\times}256$]-FPA fabrication. An FPA-ROIC thermographic module was accomplished by using a $18/10-{\mu}m$ In-bump/UBM process and a flip-chip bonding technique, and the thermographic image was demonstrated by utilizing a mid-infrared camera and an image processor.

Experimental Study on Behavior of Green Water for Rectangular Structure (사각형 해양구조물의 청수현상 발생과정에 대한 실험적 연구)

  • Chae, Young Jun;Lee, Kang Nam;Jung, Kwang Hyo;Suh, Sung Bu;Lee, Jae Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.44-50
    • /
    • 2016
  • An experimental study was performed to investigate the behavior of green water on a structure with a rectangular cross section under wave conditions, along with the flow characteristics in bubbly water flow. An experiment was conducted in a two-dimensional wave flume using an acrylic model (1/125) of FPSO BW Pioneer operating in the Gulf of Mexico under its design wave condition. The occurrence of green water, including its development, in front of the model was captured using a high-speed Charge Coupled Device (CCD) camera with the shadowgraph technique. Using consecutive images, the generation procedure for green water on the model was divided into five phases: flip through, air entrapment, wave run-up, wave overturning, and water shipping. In addition, the distinct water elevations of the green water were defined as the height of flip through, height of splashing jet, and height of freeboard exceedance, and showed a linear relationship with the incoming wave height.

High Performance Coprocessor Architecture for Real-Time Dense Disparity Map (실시간 Dense Disparity Map 추출을 위한 고성능 가속기 구조 설계)

  • Kim, Cheong-Ghil;Srini, Vason P.;Kim, Shin-Dug
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.301-308
    • /
    • 2007
  • This paper proposes high performance coprocessor architecture for real time dense disparity computation based on a phase-based binocular stereo matching technique called local weighted phase-correlation(LWPC). The algorithm combines the robustness of wavelet based phase difference methods and the basic control strategy of phase correlation methods, which consists of 4 stages. For parallel and efficient hardware implementation, the proposed architecture employs SIMD(Single Instruction Multiple Data Stream) architecture for each functional stage and all stages work on pipelined mode. Such that the newly devised pipelined linear array processor is optimized for the case of row-column image processing eliminating the need for transposed memory while preserving generality and high throughput. The proposed architecture is implemented with Xilinx HDL tool and the required hardware resources are calculated in terms of look up tables, flip flops, slices, and the amount of memory. The result shows the possibility that the proposed architecture can be integrated into one chip while maintaining the processing speed at video rate.

Design of a 25 mW 16 frame/s 10-bit Low Power CMOS Image Sensor for Mobile Appliances

  • Kim, Dae-Yun;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • A CMOS Image Sensor (CIS) mounted on mobile appliances requires low power consumption due to limitations of the battery life cycle. In order to reduce the power consumption of CIS, we propose novel power reduction techniques such as a data flip-flop circuit with leakage current elimination and a low power single slope analog-to-digital (A/D) converter with a sleep-mode comparator. Based on 0.13 ${\mu}m$ CMOS process, the chip satisfies QVGA resolution (320 ${\times}$ 240 pixels) that the cell pitch is 2.25 um and the structure is a 4-Tr active pixel sensor. From the experimental results, the performance of the CIS has a 10-b resolution, the operating speed of the CIS is 16 frame/s, and the power dissipation is 25 mW at a 3.3 V(analog)/1.8 V(digital) power supply. When we compare the proposed CIS with conventional ones, the power consumption was reduced by approximately 22% in the sleep mode, and 20% in the active mode.

RF Shimming Considering Coupling Effects for High-Field MRI

  • Heo, Hye-Young;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.267-271
    • /
    • 2008
  • The RF shimming technique has been used to improve the transmit RF field homogeneity in highfield MRI. In the RF shimming technique, the amplitude and phase of the driving currents in each coil element are optimized to get homogenous flip angle or uniform image intensity. The inductive and capacitive coupling between the coil elements may degrade the RF field homogeneity if not taken into account in the optimization procedure. In this paper, we have analyzed the coupling effects on the RF shimming using a sixteen-element TEM RF coil model operating at 300 MHz. We have found that the coupling effects on the RF shimming can be reduced by putting high dielectric material between the active rung and the shield.