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High Performance Coprocessor Architecture
for Real-Time Dense Disparity Map
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ABSTRACT

This paper proposes high performance coprocessor architecture for real time dense disparity computation based on a phase-based
binocular stereo matching technique called local weighted phase-correlation (LWPC). The algorithm combines the robustness of wavelet
based phase difference methods and the basic control strategy of phase correlation methods, which consists of 4 stages. For parallel and
efficient hardware implementation, the proposed architecture employs SIMD (Single Instruction Multiple Data Stream) architecture for each
functional stage and all stages work on pipelined mode. Such that the newly devised pipelined linear array processor is optimized for the
case of row-column image processing eliminating the need for transposed memory while preserving generality and high throughput. The
proposed architecture is implemented with Xilink HDL tool and the required hardware resources are calculated in terms of look up tables,
flip flops, slices, and the amount of memory. The result shows the possibility that the proposed architecture can be integrated into one
chip while maintaining the processing speed at video rate,
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1. Introduction

Disparity computation to acquire 3-D depth information
from a scene has been used for high level computer
vision tasks such as navigation (robotics, cars, and space)
and shape acquisition (virtual reality and movies). For
this purpose, a stereo vision system can be devised using
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two cameras located at two different positions, which

may imitate the human visual system known as
binocular stereopsis that allows the visual sense to give
an immediate perception of depth on the basis of the
difference in points of view of the two eyes. It exists in
those animals with overlapping optical fields, acting as a
range finder for objects within reach. In stereo vision
system, the geometry associated with solving this
problem is simplified by assuming that the two cameras

are coplanar with aligned image coordinate systems. (Fig.
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1) shows the basic structure for the stereo image
formation and the stereo camera geometry. The center of
the lens is called the camera focal center and the axis
extending from the focal center is referred to as the focal
axis. The line connecting the focal centers is called the
baseline, b. The plane passing through an object point
and the focal centers is the epipolar plane. The
intersection of two image planes with an epipolar plane
makes the epipolar line. Let (X, Y, Z) denote the real
world coordinates of a point. The point is projected onto
two corresponding points, (x, y)) and (x, y.), in the left
and right images. The disparity is defined as the
difference vector between two points in the stereo
images, corresponding to the same point in an object, v =
= X y1 = yo.

The most difficult area in stereo vision is matching
points or features between the left and right images,
called as stereo matching or stereo correspondence
problem, which has been an intensive area of research for
decades [1, 2]. Most of previous studies to solve and
improve the performance of stereo matching can be
grouped into three categories according to matching
primitives; area based [3], feature based [4], and phased

based approaches [5].

Area based approaches use the pixels or regions as
the matching primitive to measure the similarity between
two stereo Images under assuming that the image
intensity corresponding to a 3-D point remains the same
in binocular images. That is, each location in the left
image can find a similar location in the right image
exploiting the epipolar constraint. This technique can
produce dense disparity maps; on the other hands, it may
have the disadvantage of becoming sensitive to contrast
and illumination caused by using intensity values at each
pixel directly.

Feature-based techniques use sparse primitives such as
corners, edges, straight line segments, or other interesting
operators. Here, the process can be divided into two
stages; the first one involves preprocessing for extracting
these features; the second one finds the corresponding
from only these extracted features and assigns disparities
to them. Therefore, this technique may extract more
robust disparity map than area based approaches;
however, it can not generate dense disparity maps.

In phase based techniques, the disparity is defined as
the shift necessary to align the phase value of band-pass
filtered versions of the two images. In [5], phase-based
methods are shown to be robust when there are smooth
lighting variations between stereo images. The first step
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(Fig. 1) Basic structure for stereo image formation and stereo
camera geometry

in any phase-based method is to extract the phase from
input images. One commonly used approach is to pass
the input images through complex-valued quadrature pair
filters. The phase of the complex-valued output of these
filters is used as the primitive for stereo matching.

However, stereo matching, in general, requires considerably
high computational expenses, especially when extracting
dense disparity map which can produce accurate segmentation
for more reliable applications. Therefore, the real time
processing is still difficult on general purpose CPU or
DSP; such that a specialized processing hardware is
necessary to achieve the required computational complexity.
Accordingly, this paper proposes high performance coprocessor
architecture for real time dense disparity computation
based on a phase-based binocular stereo matching technique
called local weighted phase—correlation (LWPC) [6].

The rest of this paper is organized as follows. Section
2 reviews several researches of real time stereo implementation
over the past decade. Section 3 introduces LWPC algorithm.
Section 4 describes the architecture and operation of the
proposed processor. Section 5 shows the simulation results.
Finally, we conclude in Section 6.

2. Related Work

Even though stereo matching is a computationally
expensive task especially when producing a dense
disparity map, the fast advance of hardware technologies
has enabled real time dense disparity map stereo to
become possible. Until now most of researches for real
fime stereo matching have been achieved through special
hardware implementations using either DSPs (digital



signal processors) and FPGAs (Field Programmable Gate

Arrays) or ASIC (application specific integrated circuit).
INRIA, a

implemented a stereo system using normalized correlation

French national research institution,
method right -angle trinocular stereo configuration with
the performance of processing 256 x 256 pixel images at
approximately 3.6 fps [7]. Jet Propulsion Laboratory (JPL)
developed a real time stereo system using a special
image processing board on a 68040 CPU board [8]. This
system was capable of processing approximately 1.7 fps
with 256 x 240 pixel images. CMU (Carnegie Mellon
University) developed the first prototype video-rate stereo
machine which could process 30 fps with 256 x 240 pixel
images on the custom hardware with an array of DSPs
[9l. Palo Alto
implemented the census stereo algorithm on the custom
PARTS engine which consisted of 16 Xilinx 4025 FPGAs
and 16 one megabyte SRAMs and computed 24 stereo
disparities on 320 x 240 pixel images pixel images at 42
fps [10].

More recently, University of Toronto mmplemented a

Interval Research Corporation in

real time system using Transmogrifier-3A (TM 3A), a
reconfigurable board containing four Xilinx Virtex2000E
FPGAs [11]. Each FPGA is connected to the other three
chips via a 98 bit bus. Each chip is also connected to a
206K x 64 bit synchronous SRAM memory, an 1/O
connector, and a bus which allows communication with a
FPGA. The

multi-resolution, multi-orientation depth extraction based

housekeeping system performs
on local weighted phase correlation. It can produce a
dense disparity map of size 256 x 360 pixels with 8-bit
sub-pixel accuracy disparity results at the rate of 30
frames per second.

In addition, RTSVP (real time stereo vision processing
system), based on area correlation algorithms,
introduced with the implementation on FPGA [14] and the

commercial graphic hardware was utilized for real time

was

stereo vision processing [15].

3. Local Weighted Phase-Correlation Algorithm

The algorithm used to compute binocular disparity map
in this paper is based on a phase-based stereo matching
technique called local weighted phase-correlation (LWPC)
(6].
difference methods [5] and the basic control strategy of
This algorithm has the
advantage of being implemented on the form of a
dedicated hardware of

It combines the robustness of wavelet based phase
phase correlation methods [12].
simple

because it consists
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(Fig. 2) Block diagram of LWPC algorithm.
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computations of addition and multiplication and control
flows. Therefore, once data is fed into processing pipeline,
it goes through all of the computation stages without
stopping until having final results, which enables real
time data flow. (Fig. 2) shows the overall flow of LWPC
algorithm  which
decomposition, correlation, and peak detection.

In the scaling stage, the algorithm sub-samples input
images by a factor of 2 horizontally and vertically at
each level to build two lower scales of Gaussian pyramid.

consists of four stages: scaling,

For this purpose, both left and right images are passed
through the first quadrature-pair filters [13]. After that,
all the scales are passed through multiple G2-H2
quadrature filter pairs; each of them has unique directions
using steerable filters in the orientation decomposition
stage [13]. That is, three quadrature pair filters are
applied at each level tuned to orientations 0, +45°, and
-45° where 0 is vertical. Assuming that Kj(x) is the filter
impulse response of the jth orientation on each pixel
position x in the image, we can write the complex-valued
output of the convolution with each scale of left and right
images, Ii(x) and, I{x), as:

0(0)=K,x®1,(x) 0,x)=K;(x)®1,(x) (D

After that, the left and right pairs of filter outputs for
each scale and each orientation are passed through the
phase correlation block which assigns similarity measures
or voting functions between a pixel in one image and its
shifted versions in the other image. At this time, the
voting function, €0 (%7), is defined as:

W(x)®[0,(x)0, *(x+1)]
= 810,00 I8 0,00 T,

2

Cinlet

where Wix) is a small localized window, 7 is the pre-
shift of the right filter output, and the subscript j refers
to the j" filter.

These voting functions are then combined over all the
1<m<M, 1<j<F, to buid
the overall voting value. Here F is the total number of

scales, and orientations,

orientations and M is the total number of scales. This
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can be expressed for the position, x, as below:

S(x,7)= ZC(,-,,,.)(X’ ) (3)

Finally, the shift corresponding to the location of the
peak response will be selected as an estimate for the
disparity.

4. Proposed Hardware Architecture

The proposed hardware architecture for extracting real
time dense disparity map consists of several units
according with those algorithm stages shown in (Fig. 2),
scaling unit, orientation decomposition unit, phase-
correlation unit, and interpolation and peak detection unit.
Input data is gray scale raw image and the system
generates 8-bit sub-pixel disparities on 256 by 360 pixel
images. For parallel and efficient hardware implementation
of the stereo depth computation, some modifications on
the original LWPC are required such as fixed-point data
representation and decreasing the low-pass filters.

4.1 Scaling unit

Scaling unit reads input data from frame buffer and
down-samples the original image in two steps, each time
by a factor of 2 in both horizontal and vertical directions.
Such that the results are two Gaussian pyramids for left
and right image, respectively. To avoid aliasing caused by
a result of down-sampling, we pass the input image
through a low-pass anti-aliasing filter. Here, a three-tap
Gaussian FIR filter is used. (Fig. 3) shows the block
diagram of scaling unit.

Memoty coniroller

. Scale 1
-

6bit  16bit * 2560it
fag  6oank

Ext1
=~ LPfiter

Gaussian
pyramid Y2 Scale 2
-

60t~ 32bit * 256bit
nag Sbank Ext2

- LP filter

Gaussian
pyramid ¥2 Scale 3
-

wh P
v [ Scale 2
= MUX = MUX

105 245t * 256bit  24bit * 256bit »
flag  10bank 10bank %

1 l Scale 3
v

To G2/H2 Filter block .

(Fig. 3) Block diagram of scaling unit

4.2 Orientation decomposition unit

In this unit, G2-H2 filter is used for orientation decomposition.
G2-H2 filters are complex valued quadrature-pair filters and
steerable, which means any arbitrary orientation of G2 or
H2 filters can be expressed as a linear combination of a
set of basis filters [13]. The basis set for G2 and H2
filter has three and four filters, respectively. In hardware,
we have implemented all the seven basis filters using
seven separable 7x7 FIR filters and then, by combining
the basis filter outputs with proper coefficients, we construct
two oriented filters in 45° and -45° degrees. Filter outputs
are reduced to a 16-bit representation before being sent
to the phase-correlation unit. (Fig. 4) shows the architecture
of the orientation decomposition stage using seven fiiters.

The important advantage of using G2-H2 filters for
hardware implementation is that they are separable, which
results in less hardware resources than non-separable
filters of the same size. A separable filter has an impulse
response that can be expressed as the product of two
functions: one which only depends on row, and one which
only depends on column. Consider a separable filter with
impulse response K/x,y/, which can be expressed as:

Klx, y1=Flx]-G{y] )

Then, the 2-D convolution of image Ifx,y] with K/x,y]
can be written as:

1[x, y]1® K[x,y] = I[x, y] ® F[x]) ® G[y] ®)
Or

I[x, y]® K[x, y] =[x, y]® G[y]) ® F[x] ©®

Therefore, the convolution of the input image with an
N x N, can be replaced with two separate 1-D
convolutions with a horizontal wvector, 1 x N, and a
vertical vector, N x 1. This feature reduces the filter
complexity from O(N’°) to O(2N).

However, in hardware, these approaches need to
transpose the intermediate results using a shared memory
array, which leads to a high circuit complexity and a
long time for loading and unloading. This paper proposes
a pipelined array architecture consisting of two linear
arrays (X and Y) as shown on (Fig. 5(a)). (Fig. 5(b))
shows the overall time schedule of the proposed array.
The intermediate result from X array can be immediately
fed into Y array without additional control. Assuming
that the X array starts computation at t = 0, the Y array
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can start processing after the first intermediate result
from X array. After that two arrays can operate at the
exact same rate and generate results simultaneously.
Performance gain can be obtained by the ratio of the
total number of computations to the product of latency
times and number of processors. Each PE (processing
element) in the array consists of fixed point numerical
arithmetic units, a shifter, a register file, and special
registers for communications. For MAC (multiply and
accumulate) operation, the result of multiplier is bypassed to

adder in arithmetic units.

4.3 Phase correlation unit

(Fig. 6) shows the overall architecture of the phase
correlation unit, in which the value of D represents the
maximum disparity distance between left and right images.
This unit computes the real part of the voting function
using Equation 2 and finds the best match with a similarity
function for each pixel in the left image and the horizontally
shifted locations of that pixel in the right image. This is
possible because for each pixel in one image, the corresponding
pixel in the other image lies on the same scan line and
within a maximum distance. The similarity function results
are then combined across all scales and orientations. The
shift value which produces the highest similarity will be
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(Fig. 6) Block diagram of phase correlation unit
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(Fig. 7) Block diagram of phase correlation unit

selected as the best match.

From Equation 2, to compute voting function C in
location x of the image and for candidate disparity of 7,
we need Gaussian windows, W(x), at three different
locations. However, for efficient hardware implementation,
they are reduced to one by moving the window at the
end of divider as shown in (Fig. 7).

4.4 Interpolation and peak detection unit

The interpolation and peak detection unit interpolates
two coarser scale voting functions, Cya(*7) and
Cy»%7), in both x and 7 domain such that they can be

combined with the finest scale voting function Cin(*:7).
(Fig. 8) shows the block diagram of the interpolation and
peak detection unit. Here, the interpolated voting functions
are then added together to produce the overall voting

function S(x,7). Such that the peak detection result of
each pixel x in the image can be found with the value of
7 when S(x,7)is maximum. After that a simple
From Phase-Comelation
Unit

Bbit 48 *256bit
flag  6bank*150

Lp filter * 150

Interpolation/
sum

I L
External memory
Interpolation  —

Sum/select

(Fig. 8) Block diagram of interpolation and peak detection unit
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sub-pixel peak detection scheme [111 refers to the
maximum value, in which two adjacent points - left and
right - in the 7 domairi are added to the maximum value
and fitted to a quadratic curve. This result produces
disparity values with 8-bit resolution - 5 bits for the
integer and 3 bits for sub-pixel - from 20-pixel disparity

range.

5. Experimental Results

We implemented the original LWPC algorithm using
Matlab 7.0 to evaluate its functionality; and then simplified
and optimized it for hardware implementation and emulated
hardware functional behavior in software using C++. After
that, we built the hardware based on the emulation version
with VHDL [16] and synthesized using Xilinx ISETM 8.1i
[17]. The execution times of two software platforms are
compared on 1.7 GHz Pentium IV personal computer. And
the hardware resources used in each unit of the proposed
stereo system are calculated in terms of look up tables
(LUTs), flip flops, slices, and the amount of memory.

First, to evaluate the functionality of the LWPC
algorithm, we implemented the algorithm with floating
point operations using C++ and Matlab 7.0. Their
execution times are 35 and 22 seconds for a frame with
Matlab and C++ implementation. In case of C++
implementation, we also measure the execution time after
modifying the algorithm with fixed point representation
and reducing Gaussian windows as mentioned in Section
4.3. These optimizations result in the further improvement
on execution time about 7 seconds. However, it is still
far from the real time processing on general purpose
computing devices. The calculated sample disparity map
using the simplified LWPC is shown on (Fig. 9(c)) with
an input image pair of SRI tree, in which the distance is

(Fig. 9) (a) Left input image, (b) Right input image, (c) Disparity
map

{Table 1> Hardware resources with floating point operations

Unit ﬁi:;ut #of | #of |Multiplier | Memory | External

LUTs flip-flops | slices | (18«18) | bank | memory

Low pass| 8Ht | 6% | 42 |5 | NA | 10 | NA
filter

adder 16-bit | 1,320 848 1,089 NA 5 NA

G2/H2 32,780 4064 | 19643 266 54 NA
Filtering | 5427 | 31800 |435/| NA NA

Correlation 3%
Exe. 5907 16986 | 4834 i) NA

Inerpoi | e 0 | 631 | 50 | 70 | NA | NA |

on Inter 1 | 1554 174 | 870 NA NA

Peak detection 1,580 1,002 % NA NA NA

{Table 2> Hardware resources with non-floating point operations

Unit # of 4-input| # of # of | Multiplier | Memory | External
LUTs |flip-flops| stices | (18+18) bank | memory
Low pass| 8-bit 30 60 203 NA 10 NA
filter
adder | 16-bit 590 100 32 NA 5 NA
G2/MH2 16351 4064 1215 60 5 NA
Correlation 17564 6600 |13170| 260 180 NA
Interpola- Inter 0| 2316 50 | 2603 20 % VA
Bon pyer 1| 4915 | 1704 | 4406 | 38 %
Peak detection 1,178 813 607 NA % NA

coded by grey scale and the color of closer objects
become bright.

<Table 1> lists the hardware resources for the stereo
systems with floating point operations in terms of LUTs,
flip flops, slices, and the amount of memory. Here, the
size of input image is 8-bit grey scale and the final
result of scale orientation unit is represented with signed
16-bit values. The maximum displacement in the
correlation unit is 20 pixels to find the best match.
Furthermore, to reduce computation complexity, Equation
2 is converted to the bellowing equation.

RI0O,(x)0, *(x+1D)]= g
R,[0,(0IR.[0,(x + )] - 1,[0,()) [0, (x +7)] ©
As a result, the computation of imaginary part is

omitted and the Gaussian window is applied once to the

result of the divider. <Table 2> lists the reduced hardware
resources after optimization. The result shows that the
reduced version saves around 55% of hardware resources
in the numbers of LUTs and slices. In case of the number
of flip flops, the reduction ratio reaches up to 75%. The
hardware resources required in [11] are also expressed in
terms of LUTs and flip flops. Here, 4-input LUTs and



flip flops are required around 66,475 82,955, respectively.
The proposed architecture can reduce flip-flops over 80%
being compared with the real time stereo system in [11].
This shows the possibility that the proposed architecture
can be integrated into one chip.

6. Conclusion

In this paper, high performance coprocessor architecture
for dense disparity computation based on the local weighed
phase-correlation algorithm is proposed. For parallel and
efficient hardware implementation, some modifications on
the original LWPC were necessary such as fixed-point
data representation and decreasing the complexity of low
-pass filters. For 2-dimensional convolution which is known
as separable, two linear arrays working on pipelined mode,
in which intermediate result from X array can be immediately
fed into Y array without additional control. The important
advantage is requiring much less hardware resources than
non-separable filters of the same size. The simulation result
shows the possibility that the proposed architecture can
be integrated into one chip after reducing the computational
complexity of G2-H2 filter block and the phase-correlation
unit while maintaining the processing speed at video rate.
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