• Title/Summary/Keyword: Image feature points

Search Result 537, Processing Time 0.024 seconds

Feature based matching using edge and intensity (에지 정보와 밝기 정보를 이용한 특징 기반 정합)

  • Kim, Jung-Ho;Um, Gi-Mun;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.414-417
    • /
    • 1993
  • The methods for stereo matching are divided into two techniques: area-based matching and feature-based matching. To find corresponding points by area-based method, it takes a lot of time because there are many points to be matched. Feature-based matching algorithm is often used because with this method it matches only some feature points so that the processing time is fast even though it requires interpolation after matching. In this paper, we propose the smart technique by which we makes features simpler than conventional methods to match an image pair by feature-based matching algorithm.

  • PDF

Seamline Detection for Image Mosaicking with Image Pyramid (영상 피라미드 기반 영상 모자이크를 위한 접합선 추출)

  • Eun-Jin Yoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.268-274
    • /
    • 2023
  • Image mosaicking is one of the basic and important technologies in the field of application using images. The key of image mosaicking is to extract seamlines from a joint image. The method proposed in this paper for image mosaicking is as follows. The feature points of the images to be joined are extracted and the joining form between the two images is identified. A reference position for detection the seamlines were selected according to the joint form, and an image pyramid was created for efficient image processing. The outlines of the image including buildings and roads are extracted from the overlapping area with low resolution, and the seamlines are determined by considering the components of the outlines. Based on this, the seamlines in the high-resolution image was re-searched and finally the seamline for image mosaicking was determined. In addition, in order to minimize color distortion of the image with the determined seamline, a method of improving the quality of the mosaic image by fine correction of the mosaic area was applied. It was confirmed that the quality of the seamline extraction results applying the method proposed was reasonable.

A Feature Tracking Algorithm Using Adaptive Weight Adjustment (적응적 가중치에 의한 특징점 추적 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.68-78
    • /
    • 1999
  • A new algorithm for tracking feature points in an image sequence is presented. Most existing feature tracking algorithms often produce false trajectories, because the matching measures do not precisely reflect motion characteristics. In this paper, three attributes including spatial coordinate, motion direction and motion magnitude are used to calculate the feature point correspondence. The trajectories of feature points are determined by calculation the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights of the attributes are updated reflecting the motion characteristics, so that the robust tracking of feature points is achieved. The proposed algorithm can find the trajectories correctly which has been shown by experimental results.

  • PDF

Comparative Study of Corner and Feature Extractors for Real-Time Object Recognition in Image Processing

  • Mohapatra, Arpita;Sarangi, Sunita;Patnaik, Srikanta;Sabut, Sukant
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.263-270
    • /
    • 2014
  • Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.

Emotion Recognition by CCD Color Image (CCD 컬러영상에 의한 감성인식)

  • Lee, Sang-Yoon;Joo, Young-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • In this paper, we propose the technique for recognizing the human s emotion by using the CCD color image. To do this, we first get the face image by using skin-color from the original color image acquired by the CCD camera. And we propose the method for finding man s feature points(eyebrows, eye, nose, mouse) from the face image and the geometrical method for recognizing human s emotion (surprise, anger, happiness, sadness) from the structural correlation of man s feature feints. The proposed method in this paper recognize the human s emotion by learning the neural network. Finally, we have proven the effectiveness of the Proposed method through the experimentation.

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

Object Feature Extraction Using Double Rearrangement of the Corner Region

  • Lee, Ji-Min;An, Young-Eun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.122-126
    • /
    • 2019
  • In this paper, we propose a simple and efficient retrieval technique using the feature value of the corner region, which is one of the shape information attributes of images. The proposed algorithm extracts the edges and corner points of the image and rearranges the feature values of the corner regions doubly, and then measures the similarity with the image in the database using the correlation of these feature values as the feature vector. The proposed algorithm is confirmed to be more robust to rotation and size change than the conventional image retrieval method using the corner point.

Parallelizing Feature Point Extraction in the Multi-Core Environment for Reducing Panorama Image Generation Time (파노라마 이미지 생성시간을 단축하기 위한 멀티코어 환경에서 특징점 추출 병렬화)

  • Kim, Geon-Ho;Choi, Tai-Ho;Chung, Hee-Jin;Kwon, Bom-Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.331-335
    • /
    • 2008
  • In this paper, we parallelized a feature point extraction algorithm to reduce panorama image generation time in multi-core environment. While we compose a panorama image with several images, the step to extract feature points of each picture is needed to find overlapped region of pictures. To perform rapidly feature extraction stage which requires much calculation, we developed a parallel algorithm to extract feature points and examined the performance using CBE(Cell Broadband Engine) which is asymmetric multi-core architecture. As a result of the exam, the algorithm we proposed has a property of linear scalability-the performance is increased in proportion the number of processors utilized. In this paper, we will suggest how Image processing operation can make high performance result in multi-core environment.

A Study on the Hair Line detection Using Feature Points Matching in Hair Beauty Fashion Design (헤어 뷰티 패션 디자인 선별을 위한 특징 점 정합을 이용한 헤어 라인 검출)

  • 송선희;나상동;배용근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.934-940
    • /
    • 2003
  • In this paper, hair beauty fashion design feature points detection system is proposed. A hair models and hair face is represented as a graph where the nodes are placed at facial feature points labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between hair models and the input image. This matching hair model works like random diffusion process in the image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background. pose variations and distorted by accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.

Robust Estimation of Camera Parameters from Video Signals for Video Composition (영상합성을 위한 영상으로부터의 견실한 카메라피라미터 확정법)

  • 박종일;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1305-1313
    • /
    • 1995
  • In this paper, we propose a robust estimation of camera parameters from image sequence for high quality video composition. We first establish correspondence of feature points between consecutive image fields. After the establishment, we formulate a nonlinear least-square data fitting problem. When the image sequence contains moving objects, and/or when the correspondence establishment is not successful for some feature points, we get bad observations, outliers. They should be properly eliminated for a good estimation. Thus, we propose an iterative algorithm for rejecting the outliers and fitting the camera parameters alternatively. We show the validity of the proposed method using computer generated data sets and real image sequeces.

  • PDF