• Title/Summary/Keyword: Image extraction

Search Result 2,625, Processing Time 0.027 seconds

EFFICIENT MARKER EXTRACTION ALGORITHM FOR INITIAL SEGMENTATION IN A BOTTOM-UP IMAGE SEGMENTATION SCHEME (상향식 영상분할 구조에서의 초기 영상분할을 위한 효율적인 마커 추출 알고리즘)

  • 박현상;나종범
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.895-898
    • /
    • 1998
  • In this paper, we propose an efficient marker extraction algorithm for initial image segmentation in a bottom-up segmentation scheme. The proposed algorithm generates dense markers in visually complex areas and coarse markers in visually uniform areas. which conforms to the human perceptual system. Experimental results show that the proposed method achieves better subjective quality for fine initial image segmentation.

  • PDF

Face Detection and Extraction Based on Ellipse Clustering Method in YCbCr Space

  • Jia, Shi;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.833-840
    • /
    • 2010
  • In this paper a method for detecting and extracting the face from the image in YCbCr spaceis proposed. The face region is obtained from the complex original image by using the difference method and the face color information is taken from the reduced face region throughthe Ellipse clustering method. The experimental results showed that the proposed method can efficiently detect and extract the face from the original image under the general light intensity except for low luminance.

Vehicle extraction and tracking of stereo (스테레오를 이용한 차량 검출 및 추적)

  • Youn, Se-Jin;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2962-2964
    • /
    • 1999
  • We know the traffic information about the velocity and position of vehicle by extraction and tracking vehicle from continuosly obtained road image of camera. The conventional method of vehicle detection indicate increment of error due to headlight and taillight in night road image. This paper show such as vehicle detection of binary, Edge detection. amalgamation of image are applied to extract the vehicle, and Kalman filter is adaptive methods for tracking position and velocity of vehicle.

  • PDF

Feature Extraction and Statistical Pattern Recognition for Image Data using Wavelet Decomposition

  • Kim, Min-Soo;Baek, Jang-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.831-842
    • /
    • 1999
  • We propose a wavelet decomposition feature extraction method for the hand-written character recognition. Comparing the recognition rates of which methods with original image features and with selected features by the wavelet decomposition we study the characteristics of the proposed method. LDA(Linear Discriminant Analysis) QDA(Quadratic Discriminant Analysis) RDA(Regularized Discriminant Analysis) and NN(Neural network) are used for the calculation of recognition rates. 6000 hand-written numerals from CENPARMI at Concordia University are used for the experiment. We found that the set of significantly selected wavelet decomposed features generates higher recognition rate than the original image features.

  • PDF

Kidney's feature point extraction based on edge detection using SIFT algorithm in ultrasound image (Edge detection 기반의 SIFT 알고리즘을 이용한 kidney 특징점 검출 방법)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.89-90
    • /
    • 2019
  • 본 논문에서는 ultrasound image Right Parasagittal Liver에 edge detection을 적용한 후, 특징점 검출 알고리즘인 Scale Invarient Feature Transfom(SIFT)를 이용하여 특징점의 위치를 살펴보도록 한다. edge detection 알고리즘으로는 Canny edge detection과 Prewitt edge detection을 적용하기로 한다.

  • PDF

Extraction of kidney's feature points by SIFT algorithm in ultrasound image (SIFT 알고리즘으로 kidney 특징점 검출)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.313-314
    • /
    • 2019
  • 본 논문에서는 특징점 검출 알고리즘을 적용하여 ultrasound image에서 특징점을 검출하는 것과 object dectection을 위한 keypoints가 object에 올바르게 위치하는지를 검증하는 실험을 진행한다. 특징점 검출을 위한 알고리즘으로는 Scale Invariant Feature Transform(SIFT)과 Harris corner detection 을 적용하여 검증한다.

  • PDF

Robust Skyline Extraction Algorithm For Mountainous Images (산악 영상에서의 지평선 검출 알고리즘)

  • Yang, Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Skyline extraction in mountainous images which has been used for navigation of vehicles or micro unmanned air vehicles is very hard to implement because of the complexity of skyline shapes, occlusions by environments, dfficulties to detect precise edges and noises in an image. In spite of these difficulties, skyline extraction is avery important theme that can be applied to the various fields of unmanned vehicles applications. In this paper, we developed a robust skyline extraction algorithm using two-scale canny edge images, topological information and location of the skyline in an image. Two-scale canny edge images are composed of High Scale Canny edge image that satisfies good localization criterion and Low Scale Canny edge image that satisfies good detection criterion. By applying each image to the proper steps of the algorithm, we could obtain good performance to extract skyline in images under complex environments. The performance of the proposed algorithm is proved by experimental results using various images and compared with an existing method.

Extraction of Simplified Boundary In Binary Image (이진 영상에서의 단순화된 윤곽선 추출 방법)

  • 김성영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.34-39
    • /
    • 1999
  • In this paper, boundary extraction algorithm is suggested by removing boundary noises efficiently and simplifying object shape in binary image. To remove boundary noises, $2{times}2$ mask boundary extraction algorithm is modified . Proposed method is designed to generate a symmetric path for the parasitic branch noise and to analysis traced features on end point of noise. It can extract more simplified object boundary but preserve original object shape by combining white background color extraction result with foreground extraction result. The usefulness of the proposed method was proved through experiments with various binary images.

  • PDF

Crease detection method using fingerprint image decomposition and composition (지문 영상의 분해 및 합성에 의한 주름선 검출방법)

  • Hwang, Woon-Joo;Park, Sung-Wook;Park, Jong-Kwan;Park, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.90-97
    • /
    • 2007
  • For a highly reliable fingerprint recognition system, the precise and accurate feature extraction is indispensable. In this paper, We propose a highly efficient crease extraction method, which can improve the accuracy of feature extraction within the fingerprint image. The proposed method applies the 1-dimensional directional slit for each pixel in fingerprint image. And then it calculates the average grey level and variance to determine whether the current pixel composes the crease, and estimates the direction of crease. Once the direction of every pixel in crease candidate area is estimated, it is decomposed into 8 different images depending on their direction. From the 8 directional images, the crease clusters are estimated by utilizing the property of crease area. The proposed method finally extracts the crease from the crease clusters estimated from directional images. In conclusion, the proposed method highly improved the accuracy of overall feature extraction by accurate and precise extraction of the crease from fingerprint image.

Eye and Mouth Images Based Facial Expressions Recognition Using PCA and Template Matching (PCA와 템플릿 정합을 사용한 눈 및 입 영상 기반 얼굴 표정 인식)

  • Woo, Hyo-Jeong;Lee, Seul-Gi;Kim, Dong-Woo;Ryu, Sung-Pil;Ahn, Jae-Hyeong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.7-15
    • /
    • 2014
  • This paper proposed a recognition algorithm of human facial expressions using the PCA and the template matching. Firstly, face image is acquired using the Haar-like feature mask from an input image. The face image is divided into two images. One is the upper image including eye and eyebrow. The other is the lower image including mouth and jaw. The extraction of facial components, such as eye and mouth, begins getting eye image and mouth image. Then an eigenface is produced by the PCA training process with learning images. An eigeneye and an eigenmouth are produced from the eigenface. The eye image is obtained by the template matching the upper image with the eigeneye, and the mouth image is obtained by the template matching the lower image with the eigenmouth. The face recognition uses geometrical properties of the eye and mouth. The simulation results show that the proposed method has superior extraction ratio rather than previous results; the extraction ratio of mouth image is particularly reached to 99%. The face recognition system using the proposed method shows that recognition ratio is greater than 80% about three facial expressions, which are fright, being angered, happiness.