• Title/Summary/Keyword: Image edge extraction

Search Result 335, Processing Time 0.036 seconds

Extracting the Slope and Compensating the Image Using Edges and Image Segmentation in Real World Image (실세계 영상에서 경계선과 영상 분할을 이용한 기울기 검출 및 보정)

  • Paek, Jaegyung;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.441-448
    • /
    • 2016
  • In this paper, we propose a method that segments the image, extracts its slope and compensate it in the image that text and background are mixed. The proposed method uses morphology based preprocessing and extracts the edges using canny operator. And after segmenting the image which the edges are extracted, it excludes the areas which the edges are included, only uses the area which the edges are included and creates the projection histograms according to their various direction slopes. Using them, it takes a slope having the greatest edge concentrativeness of each area and compensates the slope of the scene. On extracting the slope of the mixed scene of the text and background, the method can get better results as 0.7% than the existing methods as it excludes the useless areas that the edges do not exist.

A Study on the Extraction of Building for three dimensional city model (3차원 도시모델을 위한 건물추출에 관한 연구)

  • Cha, Young-Su;Kim, Yong-Il;Eo, Yang-Dam;Lee, Byung-Kil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.1 s.13
    • /
    • pp.75-86
    • /
    • 1999
  • Three dimensional city model is composed of man-made and natural features, among these, most of man-made features are buildings. Therefore, it is very important to extract the building informations accurately and promptly to update the existing database. To achieve this, DTM can be reconstructed using building Information which is extracted from DTM, then this can be used as three dimensional city model. Thus, this paper aims to extract building boundaries and heights from high resolution DTM and edge informations of aerial photograph using mathematical morphology and image segmentation. We found that it is possible to extract buildings using opening operation in mathematical morphology and to improve the accuracy of building extraction using edge informations from aerial photograph.

  • PDF

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

Text Region Extraction using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에서의 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.220-224
    • /
    • 2006
  • The text to be included in the natural images has many important information in the natural image. Therefore, if we can extract the text in natural images, It can be applied to many important applications. In this paper, we propose a text region extraction method using pattern histogram of character-edge map. We extract the edges with the Canny edge detector and creates 16 kind of edge map from an extracted edges. And then we make a character-edge map of 8 kinds that have a character feature with a combination of an edge map. We extract text region using 8 kinds of character-edge map and 16 kind of edge map. Verification of text candidate region uses analysis of a character-edge map pattern histogram and structural feature of text region. The method to propose experimented with various kind of the natural images. The proposed approach extracted text region from a natural images to have been composed of a complex background, various letters, various text colors effectively.

  • PDF

Two-step Boundary Extraction Algorithm with Model (모델 정보를 이용한 2단계 윤곽선 추출 기법)

  • Choe, Hae-Cheol;Lee, Jin-Seong;Jo, Ju-Hyeon;Sin, Ho-Cheol;Kim, Seung-Dae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • We propose an algorithm for extracting the boundary of a desired object with shape information obtained from sample images. Considering global shape obtained from sample images and edge orientation as well as edge magnitude, the Proposed method composed of two steps finds the boundary of an object. The first step is the approximate segmentation that extracts a rough boundary with a probability map and an edge map. And the second step is the detailed segmentation for finding more accurate boundary based on the SEEL (seed-point extraction and edge linking) algorithm. The experiment results using IR images show robustness to low-quality image and better performance than conventional segmentation methods.

Moving Target Tracking and Recognition for Location Based Surveillance Service (위치기반 감시 서비스를 위한 이동 객체 추적 및 인식)

  • Kim, Hyun;Park, Chan-Ho;Woo, Jong-Woo;Doo, Seok-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1211-1212
    • /
    • 2008
  • In this paper, we propose image process modeling as a part of location based surveillance system for unauthorized target recognition and tracking in harbor, airport, military zone. For this, we compress and store background image in lower resolution and perform object extraction and motion tracking by using sobel edge detection and difference picture method between real images and a background image. In addition to, we use Independent Component Analysis Neural Network for moving target recognition. Experiments are performed for object extraction and tracking of moving targets on road by using static camera in 20m height building and it shows the robust results.

  • PDF

Multivariate Region Growing Method with Image Segments (영상분할단위 기반의 다변량 영역확장기법)

  • 이종열
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.273-278
    • /
    • 2004
  • Feature identification is one of the largest issue in high spatial resolution satellite imagery. A popular method associated with this feature identification is image segmentation to produce image segments that are more likely to features interested. Here, it is, proposed that combination of edge extraction and region growing methods for image segments were used to improve the result of image segmentation. At the intial step, an image was segmented by edge detection method. The segments were assigned IDs, and polygon topology of segments were built. Based on the topology, the segments were tested their similarities with adjacent segments using multivariate analysis. The segments that have similar spectral characteristics were merged into a region. The test application shows that the segments composed of individual large, spectrally homogeneous structures, such as buildings and roads, were merged into more similar shape of structures.

  • PDF

Extraction and Complement of Hexagonal Borders in Corneal Endothelial Cell Images (각막 내피 세포 영상내 육각형 경계의 검출과 보완법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.102-112
    • /
    • 2013
  • In this paper, two step processing method of contour extraction and complement which contain hexagonal shape for low contrast and noisy images is proposed. This method is based on the combination of Laplacian-Gaussian filter and an idea of filters which are dependent on the shape. At the first step, an algorithm which has six masks as its extractors to extract the hexagonal edges especially in the corners is used. Here, two tricorn filters are used to detect the tricorn joints of hexagons and other four masks are used to enhance the line segments of hexagonal edges. As a natural image, a corneal endothelial cell image which usually has regular hexagonal form is selected. The edge extraction of hexagonal shapes in corneal endothelial cell is important for clinical diagnosis. The proposed algorithm and other conventional methods are applied to noisy hexagonal images to evaluate each efficiency. As a result, this proposed algorithm shows a robustness against noises and better detection ability in the aspects of the output signal to noise ratio, the edge coincidence ratio and the extraction accuracy factor as compared with other conventional methods. At the second step, the lacking part of the thinned image by an energy minimum algorithm is complemented, and then the area and distribution of cells which give necessary information for medical diagnosis are computed.

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Self-Generation Supervised Learning Algorithm Based on Enhanced ART1 (윤곽선 추적과 개선된 ART1 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 김광백
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.65-79
    • /
    • 2003
  • In general, the extraction and recognition of identifier is very hard work, because the scale or location of identifier is not fixed-form. And, because the provided image is contained by camera, it has some noises. In this paper, we propose methods for automatic detecting edge using canny edge mask. After detecting edges, we extract regions of identifier by detected edge information's. In regions of identifier, we extract each identifier using contour tracking algorithm. The self-generation supervised learning algorithm is proposed for recognizing them, which has the algorithm of combining the enhanced ART1 and the supervised teaming method. The proposed method has applied to the container images. The extraction rate of identifier obtained by using contour tracking algorithm showed better results than that from the histogram method. Furthermore, the recognition rate of the self-generation supervised teaming method based on enhanced ART1 was improved much more than that of the self-generation supervised learning method based conventional ART1.

  • PDF