International journal of advanced smart convergence
/
제8권3호
/
pp.131-137
/
2019
This study proposes a method of learning and recognizing the characteristics that are the classification criteria of Hangul using Mask R-CNN, one of the deep learning techniques, to recognize and classify atypical Hangul characters. The atypical characters on the Hangul signboard have a lot of deformed and colorful shapes beyond the general characters. Therefore, in order to recognize the Hangul signboard character, it is necessary to learn a separate atypical Hangul character rather than the existing formulaic one. We selected the Hangul character '닭' as sample data and constructed 5,383 Hangul image data sets and used them for learning and verifying the deep learning model. The accuracy of the results of analyzing the performance of the learning model using the test set constructed to verify the reliability of the learning model was about 92.65% (the area detection rate). Therefore we confirmed that the proposed method is very useful for Hangul signboard character recognition, and we plan to extend it to various Hangul data.
본 논문은 레이돈(Radon) 변환식으로부터 유도된 투사 근거 허프(Hough) 변환 방식을 사용하여 시간연속 영상상의 이동물체의 궤적을 추정하는 기법을 제안한다. 이때 이동비행물체는 시간연속되는 각 영상 프레임에 몇 개의 화소로 나타나며 그 궤적은 삼차원 직선으로 간주한다. 근래에 제시된 방법들은 합성영상 입단일 궤적도면을 여러 종류의 허프변환 방식을 사용하여 그 궤적을 추정하여 왔으나 본 논문의 방식은 시간연속 영상을 여러 방향에서 투사하여 얻어지는 이차원적 비행체 궤적 지식을 효과적으로 비행체 궤적 재구성에 이용함으로 비행체 탐지 능력은 물론 궤적 추정 능력을 향상하였다. 아울러 투사 근거 허프 변환방식을 평가, 사정하기 위하여 영상 공간의 소음 등으로 야기된 투사 공간상의 허프 파라미터의 추정 error를 분석, 유도하였다. HiCamps라 명칭된 실제 적외선 시간연속 영상 데이타를 대상으로 시뮬레이션한 결과 비행체 궤적 추정이 아주 낮은 SNR 에서도 가능함을 보여준다.
현재까지 초분광영상을 위한 다양한 표적탐지 알고리즘이 개발 및 사용되고 있다. 그러나 표적탐지 알고리즘의 비교 및 검증 기준으로 1~2가지 영상에 적용한 탐지정확도 만을 사용하고 있어, 사용자 입장에서 그 적용성을 평가하는 데에는 한계가 있다. 본 연구의 목적은 초분광영상에 대한 표적탐지 알고리즘의 적용성을 체계적으로 분석하는 것이다. 이를 위하여 표적, 배경, 영상의 분광적 또는 복사적 특성에 관련된 5가지 기준 인자들을 정의하였고, 각 인자의 변이에 따른 6가지 기존 표적탐지 알고리즘의 탐지정확도 변화를 비교하였다. 이와 더불어 영상 크기에 따른 각 알고리즘의 처리시간을 비교하였다. 그 결과 탐지정확도 측면에서는 기준인자에 따라 적용성이 높은 알고리즘의 종류가 다르게 나타났다. 처리시간은 2차 통계값 기반 알고리즘이 다른 알고리즘에 비해 매우 크게 나타났다. 탐지정확도와 처리시간을 종합적으로 고려한 결과 사용하는 영상과 표적 그리고 배경의 특성에 따라 적용성이 높은 알고리즘의 종류가 다른 것으로 나타났다. 따라서 초분광영상에 대한 기존 표적탐지 알고리즘의 적용성은 자료의 특성 및 배경과 표적의 공간적 분광적 관계에 따라 다르게 나타나므로, 사용하는 자료의 특성과 목적에 따라 적용하는 표적탐지 알고리즘의 종류가 달라질 필요가 있다.
사이드 스캔 소-나 시스템을 이용하여 태안반도 부근 신두리 해역에서 해저면 음향영상 자료를 획득하였다. 후방산란 음향강도와 해저퇴적물의 물성에 대한 상호관계를 연구하였다. 그리고 위의 두 자료 모두 해저수심과 각각 비교해석 하였다. 해저퇴적물의 물성 대부분은 음향강도와 좋은 상관관계를 보이고 있지만, 퇴적물의 분포양상은 암반노출지역을 제외하고는 해저면 음향영상과 정확하게 일치하지는 않았다. 해저수심은 해저면 음향영상의 분포형태에 영향을 미치고 있었을 뿐만 아니라, 해저퇴적물의 물성 분포에서도 선형적인 관계를 보이고 있었다.
IoT 디바이스의 Plug & Play를 위하여 IoT 디바이스의 대표적인 유선 인터페이스인 USB의 종류를 이미지를 통하여 인식하는 모듈을 개발한다. IoT 디바이스를 구동시키기 위해서는 통신 및 디바이스 하드웨어를 구동하기 위한 드라이버가 필요하다. IoT 디바이스에 연결되는 유선 인터페이스를 스마트폰의 카메라 촬영을 통하여 얻은 이미지를 이용하여서 해당 통신 인터페이스를 인식한다. 대표적인 유선 인터페이스인 USB에 대하여 인공신경망 기반의 기계학습을 통하여 USB의 종류를 분류한다. 인공신경망의 충분한 학습을 위하여 인터넷을 통하여 USB 이미지를 수집하고, 이미지 처리를 통하여 추가적인 이미지 데이터 셋을 확보한다. 합성곱 신경망과 더불어서 다양한 심층 인공신경망으로 인식기를 구현하여서 그 성능을 비교, 평가한다.
The purpose of this study is to investigate the effect of Dot Pattern Size(0.8, 1.8, 2.5, 5, 8), color combination(W/Bk, Bk/Gr, Gr/W), Area-Ratio(Background/Dot, Dot/Background) on wearing dot-printed dresses image. Sets of stimulus and response scales(7 point semantic) were used as experimental materials. The stimuli were 30 color pictures manipulated with the combination of Dot Pattern Size, color combination, and Area-Ratio using computer simulation. The subjects were 180 female undergraduates living in Gyeongnam-do. The data was analyzed by using SPSS program. Analyzing methods were ANOVA and LSD test. Image factor of the stimulus was composed of 5 different components, visibility, chastity, attractiveness, cuteness and feminity. Among them, the visibility and chastity were important. Each dimensional image was affected by dot pattern size, color combination and Area-Ratio. In the visibility image, color combination(W/Bk is the most effective) is more influential, the larger size is effective pattern. In the cuteness and feminity image, area ratio(low-brightness dot pattern is the more effective) is more effective than color combination or dot pattern size. Even the same dot pattern size and area was recognized as different image depending on the area ratio. According to the variation of dot pattern size, color combination and area-ratio, it was investigated that the images for a dress wearer were expressed diversely, were shown differently in image dimensions, and could be produced to different images.
최근 딥러닝(deep learning) 인공지능 기반의 컴퓨터 비전 분야는 각종 영상분석 분야에서 화제로 떠오르고 있다. 본 연구에서는 딥러닝 기반의 여러 이미지 인식 알고리즘 중 이미지 내에서 객체를 검출하는 데 사용되는 Faster R-CNN 알고리즘을 이용하여 화재 이미지에서 불꽃을 검출하고자 한다. 학습 과정에서 소량의 데이터셋을 통한 화재검출 정확도 향상을 위해 이미지 오그멘테이션(image augmentation) 기법을 이용하고, 이미지 오그멘테이션을 6가지 유형별로 나누어 학습하여 정확도, 정밀도, 검출률을 비교하였다. 그 결과, 이미지 오그멘테이션의 종류가 늘어날수록 검출률이 상승하지만, 다른 객체 검출 모델들의 일반적인 정확도와 검출률의 관계와 마찬가지로 오검출율 또한 10%에서 최대 30%까지 증가하게 됨을 확인하였다.
LANDSAT TM 자료를 이용한 지형변화를 관측하는데 알맞은 알고리즘에 대한 고찰과 이 알고리즘을 1986년 4월 15일과 1992년 9월 22일 경기만에서 얻어진 LANDSAT TM 자료에 적용하여 타당성을 시험하였다. 이 알고리즘은 변화벡터분석법과 tasseled cap 변환을 이용한 방법이다. 변화벡터분석법은 영상자료간의 변화를 관측하는데는 우수하지만 그 변화벡터의 수가 증가함에 따라 효율이 감소하는 단점이 있다. 이와 같은 단점을 보완하기 위해 tasseled cap 변환을 이용함으로서 원래 6개 밴드의 LANDSAT TM 자료를 두 개의 밴드 즉 Brightness와 Greenness로 줄일 수 있게 된다. 시험적용 결과 이 알고리즘은 해안선 일대에서의 대규모 지형변화뿐만 아니라 육안관측으로는 어려운 미세한 변화까지도 관측 가능한 것으로 나타났다. 그러나 본 연구결과의 변화벡터 영상에서는 인공적인 변화에 더 민감한 것으로 나타났는데 이는 본 연구에 사용된 두 LANDSAT TM 자료가 얻어진 시간 간격이 지질학적 작용에 의한 변화가 나타나기에는 비교적 짧기 때문인 것으로 사료된다.
We apply a modified Convolutional Neural Network (CNN) model in conjunction with transfer learning to predict whether an active region (AR) would produce a ≥C-class or ≥M-class flare within the next 24 hours. We collect line-of-sight magnetogram samples of ARs provided by the SHARP from May 2010 to September 2018, which is a new data product from the HMI onboard the SDO. Based on these AR samples, we adopt the approach of shuffle-and-split cross-validation (CV) to build a database that includes 10 separate data sets. Each of the 10 data sets is segregated by NOAA AR number into a training and a testing data set. After training, validating, and testing our model, we compare the results with previous studies using predictive performance metrics, with a focus on the true skill statistic (TSS). The main results from this study are summarized as follows. First, to the best of our knowledge, this is the first time that the CNN model with transfer learning is used in solar physics to make binary class predictions for both ≥C-class and ≥M-class flares, without manually engineered features extracted from the observational data. Second, our model achieves relatively high scores of TSS = 0.640±0.075 and TSS = 0.526±0.052 for ≥M-class prediction and ≥C-class prediction, respectively, which is comparable to that of previous models. Third, our model also obtains quite good scores in five other metrics for both ≥C-class and ≥M-class flare prediction. Our results demonstrate that our modified CNN model with transfer learning is an effective method for flare forecasting with reasonable prediction performance.
Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
대한원격탐사학회지
/
제15권4호
/
pp.357-365
/
1999
The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the KOrea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in late 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As a part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed, archived, and provided. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.