Browse > Article
http://dx.doi.org/10.5303/JKAS.2019.52.6.217

MODIFIED CONVOLUTIONAL NEURAL NETWORK WITH TRANSFER LEARNING FOR SOLAR FLARE PREDICTION  

Zheng, Yanfang (College of Electrical and Information Engineering, Jiangsu University of Science and Technology)
Li, Xuebao (College of Electrical and Information Engineering, Jiangsu University of Science and Technology)
Wang, Xinshuo (College of Electrical and Information Engineering, Jiangsu University of Science and Technology)
Zhou, Ta (College of Electrical and Information Engineering, Jiangsu University of Science and Technology)
Publication Information
Journal of The Korean Astronomical Society / v.52, no.6, 2019 , pp. 217-225 More about this Journal
Abstract
We apply a modified Convolutional Neural Network (CNN) model in conjunction with transfer learning to predict whether an active region (AR) would produce a ≥C-class or ≥M-class flare within the next 24 hours. We collect line-of-sight magnetogram samples of ARs provided by the SHARP from May 2010 to September 2018, which is a new data product from the HMI onboard the SDO. Based on these AR samples, we adopt the approach of shuffle-and-split cross-validation (CV) to build a database that includes 10 separate data sets. Each of the 10 data sets is segregated by NOAA AR number into a training and a testing data set. After training, validating, and testing our model, we compare the results with previous studies using predictive performance metrics, with a focus on the true skill statistic (TSS). The main results from this study are summarized as follows. First, to the best of our knowledge, this is the first time that the CNN model with transfer learning is used in solar physics to make binary class predictions for both ≥C-class and ≥M-class flares, without manually engineered features extracted from the observational data. Second, our model achieves relatively high scores of TSS = 0.640±0.075 and TSS = 0.526±0.052 for ≥M-class prediction and ≥C-class prediction, respectively, which is comparable to that of previous models. Third, our model also obtains quite good scores in five other metrics for both ≥C-class and ≥M-class flare prediction. Our results demonstrate that our modified CNN model with transfer learning is an effective method for flare forecasting with reasonable prediction performance.
Keywords
magnetic fields; Sun: activity; Sun: flares; techniques: image processing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huang, X., Yu, D. R., Hu, Q. H., et al. 2010, Short-Term Solar Flare Prediction Using Predictor Teams, SoPh, 263, 175
2 Ioffe, S., & Szegedy, C. 2015, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Proc. 32nd Int. Conf. Machine Learning (ICML'15), 37, 448
3 LeCun, Y., Bengio, Y., & Hinton, G. 2015, Deep Learning, Nature, 521, 436   DOI
4 LeCun, Y., Bottou, L., Orr, G., & Muller, K. 1998, Efficient BackProp, Neural Networks: Tricks of the Trade (Berlin: Springer), 9, 48
5 Li, R., & Zhu, J. 2013, Solar Flare Forecasting Based on Sequential Sunspot Data, RAA, 13, 1118
6 Liu, C., Deng, N.,Wang, J. T. L., et al. 2017, Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm, ApJ, 843, 104   DOI
7 Mason, J. P., & Hoeksema, J. T. 2010, Testing Automated Solar Flare Forecasting with 13 Years of Michelson Doppler Imager Magnetograms, ApJ, 723, 634   DOI
8 Nair, V., & Hinton, G. E. 2010, Rectified Linear Units Improve Restricted Boltzmann Machines, Proc. 27th Int. Conf. on Machine Learning (ICML-10) (Madison, WI: Omnipress), 807
9 Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2017, Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms, ApJ, 835, 156   DOI
10 Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2018, Deep Flare Net (DeFN) Model for Solar Flare Prediction, ApJ, 858, 113
11 Park, E., Moon, Y. J., Shin, S., et al. 2018, Application of the Deep Convolutional Neural Network to the Forecast of Solar Flare Occurrence Using Full-disk Solar Magnetograms, ApJ, 869, 91   DOI
12 Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, The Solar Dynamics Observatory (SDO), SoPh, 275, 3
13 Priest, E. R., & Forbes, T. G. 2002, The Magnetic Nature of Solar Flares, A&ARv, 10, 313   DOI
14 Qahwaji, R., & Colak, T. 2007, Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations, SoPh, 241, 195
15 Razavian, A. S., Azizpour, H., Sullivan, J., et al. 2014, CNN Features Off-the-shelf: an Astounding Baseline for Recognition, arXiv:1403.6382
16 Sadykov, V. M., & Kosovichev, A. G. 2017, Relationships between Characteristics of the Line-of-sight Magnetic Field and Solar Flare Forecasts, ApJ, 849, 148   DOI
17 Song, H., Tan, C., Jing, J., et al. 2009, Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions, SoPh, 254, 101
18 Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012, Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO), SoPh, 275, 229
19 Shibata, K., & Magara, T. 2011, Solar Flares: Magnetohydrodynamic Processes, LRSP, 8, 6
20 Simonyan, K., & Zisserman, A. 2015, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015, arXiv:1409.1556
21 Szegedy, C., Liu, W., Jia, Y., et al. 2014, Going Deeper with Convolutions, arXiv:1409.4842
22 Tang, H. M., Scaife, A. M. M., & Leahy, J. P. 2019, Transfer Learning for Radio Galaxy Classification, arXiv:1903.11921
23 Yu, D. R., Huang, X., Wang, H. N., et al. 2010, Short-term Solar Flare Level Prediction Using a Bayesian Network Approach, ApJ, 710, 869   DOI
24 Bloomfield, D. S., Higgins, P. A., James McAteer, R. T., et al. 2012, Toward Reliable Benchmarking of Solar Flare Forecasting Methods, ApJL, 747, L41   DOI
25 Yuan, Y., Shih, F. Y., Jing, J., et al. 2010, Automated Flare Forecasting Using a Statistical Learning Technique, RAA, 10, 785
26 Abadi, M., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org
27 Abraham, S., Aniyan, A. K., Kembhavi, A. K., et al. 2018, Detection of Bars in Galaxies Using a Deep Convolutional Neural Network, MNRAS, 477, 894   DOI
28 Ahmed, O. W., Qahwaji, R., & Colak, T. 2013, Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection, SoPh, 283, 157
29 Aniyan, A. K., & Thorat, K., 2017, Classifying Radio Galaxies with the Convolutional Neural Network, ApJS, 230, 20   DOI
30 Barnes, G., Leka, K. D., Schrijver, C. J., et al. 2016, A Comparison of Flare Forecasting Methods, I: Results from the "All-Clear" Workshop, ApJ, 829, 89   DOI
31 Bobra, M. G., & Couvidat, S. 2015, Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-Learning Algorithm, ApJ, 798, 135   DOI
32 Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches, SoPh, 289, 3549
33 Colak, T., & Qahwaji, R. 2009, Automated Solar Activity Prediction: A Hybrid Computer Platform Using Machine Learning and Solar Imaging for Automated Prediction of Solar Flares, SpWea, 7, S06001
34 Deng, J., Dong, W., Socher, R., et al. 2009, ImageNet: A Large-scale Hierarchical Image Database, IEEE Conference on Computer Vision and Pattern Recognition, 248, 255
35 Florios, K., Kontogiannis, I., Park, S. H., et al. 2018, Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning, SoPh, 293, 28
36 Gaier, A., & Ha, W. 2019, Weight Agnostic Neural Networks, arXiv:1906.04358
37 Goodfellow I., Bengio Y., & Courville A. 2016, Deep Learning (Cambridge, MA: MIT Press)
38 Guerra, J. A., Pulkkinen, A., & Uritsky, V. M. 2015, Ensemble Forecasting of Major Solar Flares: First Results, SpWea, 13, 626
39 Hanssen, A. W., & Kuipers, W. J. A. 1965, On the Relationship between the Frequency of Rain and Various Meteorological Parameters, Meded. Verh., 81, 2
40 Heidke, P. 1926, Berechnung des Erfolges und der Gute der Windstarkevorhersagen im Sturmwarnungdienst (Calculation of the Success and Goodness of Strong Wind Forecasts in the Storm Warning Service), Geogr. Ann. Stockholm, 8, 301
41 Hinton, G. E., & Salakhutdinov, R. R. 2006, Reducing the Dimensionality of Data with Neural Networks, Science, 313, 504   DOI
42 Chollet, F., et al. 2015, Keras, https://github.com/keras-team/keras
43 Huang, G., Liu, Z., van der Maaten, L., et al. 2016, Densely Connected Convolutional Networks, arXiv:1608.06993
44 Huang, X., Wang, H., Xu, L., et al. 2018, Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms, ApJ, 856, 7   DOI