• Title/Summary/Keyword: Image based localization

검색결과 259건 처리시간 0.031초

CLASSIFIED ELGEN BLOCK: LOCAL FEATURE EXTRACTION AND IMAGE MATCHING ALGORITHM

  • Hochul Shin;Kim, Seong-Dae
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2108-2111
    • /
    • 2003
  • This paper introduces a new local feature extraction method and image matching method for the localization and classification of targets. Proposed method is based on the block-by-block projection associated with directional pattern of blocks. Each pattern has its own eigen-vertors called as CEBs(Classified Eigen-Blocks). Also proposed block-based image matching method is robust to translation and occlusion. Performance of proposed feature extraction and matching method is verified by the face localization and FLIR-vehicle-image classification test.

  • PDF

유비쿼터스 이동로봇용 천장 인공표식을 이용한 비젼기반 자기위치인식법 (Vision-based Self Localization Using Ceiling Artificial Landmark for Ubiquitous Mobile Robot)

  • 이주상;임영철;유영재
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.560-566
    • /
    • 2005
  • 본 논문은 유비쿼터스 이동로봇의 자기위치인식에 적용되는 비젼시스템의 왜곡된 영상을 보정하기 위한 실용적인 방법을 제안하다. 이동로봇에서 자기위치인식은 필수적인 요소이며 카메라 비젼시스템을 이용하여 처리 가능하다. 자기위치인식에서 비젼시스템은 넓은 시야를 확보하기 위해 어안렌즈를 이용하는데, 이는 영상의 왜곡을 발생한다. 또한 이동로봇은 지속적인 움직임을 가지므로 빠른 시간 내에 영상을 처리하여 자기위치를 인식해야 한다. 따라서 이동로봇에 적용 가능한 실용적인 영상왜곡 보정기법을 제안하고 실험을 통하여 성능을 검증한다.

오차 감소를 위한 이동로봇 Self-Localization과 VRML 영상오버레이 기법 (Self-localization of a Mobile Robot for Decreasing the Error and VRML Image Overlay)

  • 권방현;손은호;김영철;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.389-394
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localization technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

어안 워핑 이미지 기반의 Ego motion을 이용한 위치 인식 알고리즘 (Localization using Ego Motion based on Fisheye Warping Image)

  • 최윤원;최경식;최정원;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.70-77
    • /
    • 2014
  • This paper proposes a novel localization algorithm based on ego-motion which used Lucas-Kanade Optical Flow and warping image obtained through fish-eye lenses mounted on the robots. The omnidirectional image sensor is a desirable sensor for real-time view-based recognition of a robot because the all information around the robot can be obtained simultaneously. The preprocessing (distortion correction, image merge, etc.) of the omnidirectional image which obtained by camera using reflect in mirror or by connection of multiple camera images is essential because it is difficult to obtain information from the original image. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we extract motion vectors using Lucas-Kanade Optical Flow in preprocessed image. Third, we estimate the robot position and angle using ego-motion method which used direction of vector and vanishing point obtained by RANSAC. We confirmed the reliability of localization algorithm using ego-motion based on fisheye warping image through comparison between results (position and angle) of the experiment obtained using the proposed algorithm and results of the experiment measured from Global Vision Localization System.

구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식 (Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment)

  • 김동훈;이동화;명현;최현택
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

특징점 기반 확률 맵을 이용한 단일 카메라의 위치 추정방법 (Localization of a Monocular Camera using a Feature-based Probabilistic Map)

  • 김형진;이동화;오택준;명현
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.367-371
    • /
    • 2015
  • In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.

실내 이동 로봇을 위한 자연 표식과 인공 표식을 혼합한 위치 추정 기법 개발 (Development of Localization using Artificial and Natural Landmark for Indoor Mobile Robots)

  • 안준우;신세호;박재흥
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.205-216
    • /
    • 2016
  • The localization of the robot is one of the most important factors of navigating mobile robots. The use of featured information of landmarks is one approach to estimate the location of the robot. This approach can be classified into two categories: the natural-landmark-based and artificial-landmark-based approach. Natural landmarks are suitable for any environment, but they may not be sufficient for localization in the less featured or dynamic environment. On the other hand, artificial landmarks may generate shaded areas due to space constraints. In order to improve these disadvantages, this paper presents a novel development of the localization system by using artificial and natural-landmarks-based approach on a topological map. The proposed localization system can recognize far or near landmarks without any distortion by using landmark tracking system based on top-view image transform. The camera is rotated by distance of landmark. The experiment shows a result of performing position recognition without shading section by applying the proposed system with a small number of artificial landmarks in the mobile robot.

실내 자율 비행을 위한 영상 기반의 위치 인식 시스템 (Image-based Localization Recognition System for Indoor Autonomous Navigation)

  • 문성태;조동현;한상혁
    • 항공우주기술
    • /
    • 제12권1호
    • /
    • pp.128-136
    • /
    • 2013
  • 최근 자율 비행에 대한 관심이 증가하면서 다양한 센서를 통한 자기 위치 인식 연구가 진행되고 있다. 특히 GPS와 같은 자기 위치를 확보할 수 없는 실내 환경의 경우, 다른 방법을 통해 자기 위치를 파악해야 한다. 실내 환경에서 자기 위치 파악에는 여러 가지 방법이 있지만 영상을 통한 위치 인식 기술이 각광을 받고 있다. 본 논문에서는 마크를 통한 영상 기반의 위치 인식 연구에 대해 설명하고, 실제 비행체에 적용하여 자율 비행하는 방법에 대해 제안한다. 그리고 마크가 없는 실제 환경에서도 위치를 인식할 수 있도록 실시간 3차원 지도 생성을 통한 위치 인식 방법에 대해서도 논의한다.

VRML 영상오버레이기법을 이용한 로봇의 Self-Localization (VRML image overlay method for Robot's Self-Localization)

  • 손은호;권방현;김영철;정길도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.318-320
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localitzation technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

  • PDF