• 제목/요약/키워드: Image algorithm

검색결과 9,005건 처리시간 0.036초

Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.719-722
    • /
    • 2019
  • Gamma-ray images generally suffer from a lot of noise because of low photon detection in the gamma camera system. The purpose of this study is to improve the image quality in gamma-ray images using a gamma camera system with a fast nonlocal means (FNLM) noise reduction algorithm with an acceleration function. The designed FNLM algorithm is based on local region considerations, including the Euclidean distance in the gamma-ray image and use of the encoded information. To evaluate the noise characteristics, the normalized noise power spectrum (NNPS), contrast-to-noise ratio (CNR), and coefficient of variation (COV) were used. According to the NNPS result, the lowest values can be obtained using the FNLM noise reduction algorithm. In addition, when the conventional methods and the FNLM noise reduction algorithm were compared, the average CNR and COV using the proposed algorithm were approximately 2.23 and 7.95 times better than those of the noisy image, respectively. In particular, the image-processing time of the FNLM noise reduction algorithm can achieve the fastest time compared with conventional noise reduction methods. The results of the image qualities related to noise characteristics demonstrated the superiority of the proposed FNLM noise reduction algorithm in a gamma camera system.

Bi-dimensional Empirical Mode Decomposition Algorithm Based on Particle Swarm-Fractal Interpolation

  • An, Feng-Ping;He, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5955-5977
    • /
    • 2018
  • Performance of the interpolation algorithm used in the technique of bi-dimensional empirical mode decomposition directly affects its popularization and application, so that the researchers pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional empirical mode decomposition (BEMD) and is derived from the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. All parameters involved in the interpolation process are determined by using the particle swarm optimization algorithm. The presented interpolation algorithm can solve those problems of low efficiency and poor precision in the interpolation operation of bi-dimensional empirical mode decomposition and can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher speed in the decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

Accurate Segmentation Algorithm of Video Dynamic Background Image Based on Improved Wavelet Transform

  • Ming, Ming
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.711-718
    • /
    • 2022
  • In this paper, an accurate segmentation algorithm of video dynamic background image (VDBI) based on improved wavelet transform is proposed. Based on the smooth processing of VDBI, the traditional wavelet transform process is improved, and the two-layer decomposition of dynamic image is realized by using two-dimensional wavelet transform. On the basis of decomposition results and information enhancement processing, image features are detected, feature points are extracted, and quantum ant colony algorithm is adopted to complete accurate segmentation of the image. The maximum SNR of the output results of the proposed algorithm can reach 73.67 dB, the maximum time of the segmentation process is only 7 seconds, the segmentation accuracy shows a trend of decreasing first and then increasing, and the global maximum value can reach 97%, indicating that the proposed algorithm effectively achieves the design expectation.

A Fast Algorithm for Fractal Image Coding

  • Kim, Jeong-Il;Kwak, Seung-Uk;Jeong, Keun-Won;Song, In-Keun;Yoo, Choong-Yeol;Lee, Kwang-Bae;Kim, Hyen-Ug
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.521-525
    • /
    • 1998
  • In this paper, we propose a fast algorithm for fractal image coding to shorten long time to take on fractal image encoding. For its performance evaluation, the algorithm compares with other traditional fractal coding methods. In the traditional fractal image coding methods, an original image is contracted by a factor in order to make an image to be matched. Then, the whole area of the contracted image is searched in order to find contractive transformation point of the original image corresponding to the contacted image. It needs a lot of searching time on encoding and remains limitation in the improvement of compression ratio. However, the proposed algorithm not only considerably reduces encoding tin e by using scaling method and limited search area method but also improves compression ratio by using bit-plane. When comparing the proposed algorithm with Jacquin's method, the proposed algorithm provides much shorter encoding time and better compression ratio with a little degradation of the decoded image quality than Jacquin's method.

  • PDF

블록기반의 윤곽선 분류를 이용한 윤곽선 보존 영상복원 기법 (Edge-Preserving Image Restoration Using Block-Based Edge Classification)

  • 이상광;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1998년도 학술대회
    • /
    • pp.33-36
    • /
    • 1998
  • Most image restoration problems are ill-posed and need to e regularized. A difficult task in image regularization is to avoid smoothing of image edges. In this paper, were proposed an edge-preserving image restoration algorithm using block-based edge classification. In order to exploit the local image characteristics, we classify image blocks into edge and no-edge blocks. We then apply an adaptive constrained least squares (CLS) algorithm to eliminate noise around the edges. Experimental results demonstrate that the proposed algorithm can preserve image edges during the regularization process.

  • PDF

Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu's Threshold Algorithm

  • Sheng, Dong-Bo;Kim, Sang-Bong;Nguyen, Trong-Hai;Kim, Dae-Hwan;Gao, Tian-Shui;Kim, Hak-Kyeong
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.32-37
    • /
    • 2016
  • This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.

가변 블록을 고려한 블록 정합 알고리즘에 관한 연구 (A Study on Block Matching Algorithm with Variable-Block Size)

  • 김진태;주창희;최종수
    • 대한전자공학회논문지
    • /
    • 제26권9호
    • /
    • pp.1420-1427
    • /
    • 1989
  • A new block matching algorithm that improved the existing block matching algorithm in terms of image quality is proposed in this paper. The subblock of image including the vertical edge of object is subdivided into new two subblocks, and the moving vector found. The result of computer simulation shows on real image that the image quality by the algorithm becomes higher than that of the three step search algorithm by 1.1dB.

  • PDF

확장칼만필터를 이용한 실시간 표적추적 (Real-time Target Tracking System by Extended Kalman Filter)

  • 임양남;이성철
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.175-181
    • /
    • 1998
  • This paper describes realtime visual tracking system of moving object for three dimensional target using EKF(Extended Kalman Filter). We present a new realtime visual tracking using EKF algorithm and image prediction algorithm. We demonstrate the performance of these tracking algorithm through real experiment. The experimental results show the effectiveness of the EKF algorithm and image prediction algorithm for realtime tracking and estimated state value of filter, predicting the position of moving object to minimize an image processing area, and by reducing the effect by quantization noise of image.

  • PDF

Thermal Image Mosaicking Using Optimized FAST Algorithm

  • Nguyen, Truong Linh;Han, Dong Yeob
    • 한국측량학회지
    • /
    • 제35권1호
    • /
    • pp.41-53
    • /
    • 2017
  • A thermal camera is used to obtain thermal information of a certain area. However, it is difficult to depict all the information of an area in an individual thermal image. To form a high-resolution panoramic thermal image, we propose an optimized FAST (feature from accelerated segment test) algorithm to combine two or more images of the same scene. The FAST is an accurate and fast algorithm that yields good positional accuracy and high point reliability; however, the major limitation of a FAST detector is that multiple features are detected adjacent to one another and the interest points cannot be obtained under no significant difference in thermal images. Our proposed algorithm not only detects the features in thermal images easily, but also takes advantage of the speed of the FAST algorithm. Quantitative evaluation shows that our proposed technique is time-efficient and accurate. Finally, we create a mosaic of the video to analyze a comprehensive view of the scene.