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Thermal Image Mosaicking Using Optimized FAST Algorithm
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Abstract
A thermal camera is used to obtain thermal information of a certain area. However, it is difficult to depict all 

the information of an area in an individual thermal image. To form a high-resolution panoramic thermal image, 
we propose an optimized FAST (feature from accelerated segment test) algorithm to combine two or more 
images of the same scene. The FAST is an accurate and fast algorithm that yields good positional accuracy and 
high point reliability; however, the major limitation of a FAST detector is that multiple features are detected 
adjacent to one another and the interest points cannot be obtained under no significant difference in thermal 
images. Our proposed algorithm not only detects the features in thermal images easily, but also takes advantage 
of the speed of the FAST algorithm. Quantitative evaluation shows that our proposed technique is time-efficient 
and accurate. Finally, we create a mosaic of the video to analyze a comprehensive view of the scene.
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1. Introduction

Image mosaicking is a technique in which several overlapp-
ing images are combined to form a panoramic image of high 
resolution. Recent development of mobile imaging leads to 
research interest in mosaic image creation. Depending on the 
tile dataset and the imposed constraints for positioning the 
deformations, various mosaics can be created for an image. 
Thermal video mosaicking allows the creation of a large field 
of view using a thermal camera, and in some specific cases, 
it is used by managers to support decision making from an 
evaluation of the temperature distribution.

Image stitching techniques can be categorized into two 
general approaches: direct and feature based techniques. In 
the direct technique, pixel-to-pixel dissimilarity is minimized 
to perform image stitching. Meanwhile, in the feature-based 
technique, a set of features is extracted and then matched 
with each other (Arya, 2015). The development of feature 
detection techniques for image mosaicking is an important 

research subject in the field of computer vision (Bheda et al., 
2014). There are several feature detection techniques, which 
include SIFT (scale-invariant feature transform) (Lowe,2004; 
Alhwarin et al., 2008; Kai et al., 2012), FAST (Adel et al., 
2014), SURF (speeded-up robust feature) (Bay et al., 2008; 
Adel et al., 2014; Pravenaa and Mennaka, 2016), Harris (Jain 
et al., 2012), PCA – SIFT (Ke and Sukthankar, 2004), and 
ORB (Rublee et al., 2011) techniques. The SIFT technique 
is very robust; however, the computation time makes it less 
feasible. The Harris corner is not invariant to scale changes 
and needs to set a threshold value. Many redundant corners 
can be occurred or effective corners can be lost by uncertain 
threshold selection. The SURF is a fast and robust algorithm; 
however, it is poor at handling viewpoint and illumination 
changes. The FAST algorithm can detect the interest points 
for real-time applications; however, the major limitation of 
FAST is that multiple features are detected adjacent to one 
another.

Several studies on image mosaicking have been carried 
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out. A study conducted by Manmohan Sharma (2014) at the 
IIITA Campus (Indian Institute of Information Technology, 
Allahabad) included steps such as selecting the control 
points, image writing, and blending on the images taken with 
the help of a digital camera (Sharma, 2014). It enables the 
user to obtain a very wide-angle image without using any 
expensive wide-angle camera. A new compact large FOV 
(Field Of View) multi-camera system is introduced (Lu 
et al., 2016). The camera has seven small complementary 
metal-oxide-semiconductor sensor modules, which can 
obtain seven images in a single shot at the rate of 13 frames 
per second. The actual luminance of the objects was used to 
blend the images to create panoramas, so that the final image 
reflects the objective luminance accurately. A method for the 
construction of a mosaic from video sequences obtained by 
rotating the camera was presented in study of Hoseini and 
Jafari (2011). The distinctive features are first detected and 
matched using a localized scene coherence method, and 
then, the mapping function parameters are estimated for 
feature matching. The frames are mapped to the surface of 
the middle frame using the obtained transformations, and 
finally, the warped frames are combined (Hoseini and Jafari, 
2011).

Several works in the literature have already improved the 
algorithm with an aim to reduce the computation time of 
SIFT. Kai et al. (2012) used the original SIFT algorithm to 
extract numerous matching points and the precise matching 
points were selected using the maximum of minimum 
distance cluster algorithm. This optimized SIFT can avoid 
noise and structurally unrelated matching points, and thus 

improve the accuracy of image matching. Alhwarin et al. 
(2008) improved the SIFT algorithm by dividing the features 
extracted from both the test and the model object image 
into several sub-collections before they are matched. In 
addition, from the different frequency domains, the features 
are divided into several sub-collections by considering the 
features arising from different octaves. Compared to the 
original SIFT algorithm, 40% reduction in the processing 
time for matching the stereo images was achieved.

This paper presents a mosaicking technique for thermal 
images that have relatively small number of feature. We 
propose an optimized FAST algorithm that takes advantage 
of the quickness of the FAST algorithm, but overcomes its 
disadvantages.

2. Image Mosaicking

2.1 The steps of image mosaicking

Image mosaicking is an important technique in the field 
of computer vision, image processing, and panoramic image 
creation. Image mosaicking involves the stitching of multiple 
correlated images to generate a single large seamless image 
(Bheda et al., 2014). It requires an understanding of the 
geometric relationships between images. The geometric 
relations are affine transformations that relate the coordinate 
systems of different images (Sharma, 2014). Image stitching 
can be divided into three main processes: calibration, image 
registration, and blending. The goal of camera calibration is 
to produce an estimate of the extrinsic and intrinsic camera 
parameters. During image registration, multiple images are 

Fig. 1. Steps of image mosaicking

Collecting different
images that have

overlapping regions

Calculating the
transformation matrix

between the two images

Obtaining the final image
in panoramic view

Blending the stitched
border of the image so

that the image is seamless

Stitching up the
images using

the
transformation

matrix



Thermal Image Mosaicking Using Optimized FAST Algorithm

43  

compared to obtain the translations that can be used for 
the alignment of images. After registration, these images 
are merged to form a single image. Then, image blending 
technique will be used to modify the gray levels of image 
in the vicinity of a boundary to obtain a smooth transition 
between images. The overall process of image mosaicking 
is shown in Fig. 1.

2.2 Determination of the orientation of the image

2.2.1 DLT (Direct Linear Transformation)

DLT describes a direct connection between the 3D 
and image coordinates (Molnar, 2010). This method is 
based on the collinearity equations, extended by an affine 
transformation of the image coordinates. It does not require 
the image coordinate system to be fixed with the camera. The 
transformation equation of the DLT is given by Eq. (1):
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1

1
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L X L Y L Z
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=  + + + 

(1)

where Li: DLT parameters, x, y:  image coordinates, X, Y, 
Z: 3D coordinates.

Determination of the 11 DLT parameters requires a 
minimum of 6 reference points. The calculation is processed 
in two steps: first, the DLT parameters are estimated using 
the control points for each image, and the unknown points 
are then calculated if they appear on more than two oriented 
images. The least squares method, with some modifications, 

is used for the adjustment.

2.2.2 BA (Bundle Adjustment)

Fig. 2 shows the principle data flow for a BA process. The 
input data for the BA are typically photogrammetry image 
coordinates generated by manual or automatic (digital) 
image measuring systems. Additional information in the 
object space can also be taken into account. They provide the 
definition of an absolute scale and the position and orientation 
of the object coordinate system. This information is entered 
into the system as, for example, reference point files or 
additional observations. In order to linearize the functional 
model, approximate values must be generated.

The principal results of the BA are the estimated 3D 
coordinates of the object points. In addition, the exterior 
orientation parameters of all the images are estimated. 
The interior orientation parameters are estimated if the 
cameras are calibrated simultaneously within the adjustment 
(Luhmann et al., 2006).

The collinearity equations (Eq. (2)) are a mathematical 
model for the bundle block adjustment. The mathematical 
model consists of both functional and stochastic models (Lee 
and Yu, 2009).
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The structure of these equations allows the direct formulat-

Fig. 2. Data flow for the BA process
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ion of primarily observed values (image coordin-ates) as 
functions of all unknown parameters in the photogramme-
tric imaging process. The collinearity equations, linearized 
at approximate values, can be used directly as observation 
equations for a least-squares adjustment according to the 
Gauss-Markov model.

2.3 Space intersection

Space forward intersection is commonly used to determine 
the ground coordinates X, Y, and Z of points that appear in 
the overlapping areas of two or more images based on known 
interior and exterior orientation parameters. The collinearity 
condition, which states that the corresponding light rays from 
the two exposure stations pass through the corresponding 
image points on the two images and intersect at the same 
ground point, is enforced. Fig. 3 illustrates the principle of 
forward intersection (Jia et al., 2010), where P is an arbitrary 
point on the ground, O1 and O2 indicate the camera station, 
and p1 and p2 are the corresponding image points of P.

Space forward intersection techniques assume that the 
exterior orientation parameters associated with the images 
are known. Using the collinearity equations, the exterior 
orientation parameters along with the image coordinate 
measurements of point P on Image 1 and Image 2 are input to 
compute the XP, YP, and ZP coordinates of the ground point P.

2.4 �RANSAC (RANdom SAmple Consensus) 

algorithm

The RANSAC algorithm proposed by Fischler and 
Bolles, (1981) is a general parameter estimation approach 
designed to cope with a large proportion of outliers in the 
input data. The RANSAC algorithm has four steps:

(1)    Randomly select the minimum number of points 
required to determine the model parameters

(2)   Solve for the parameters of the model
(3)    Determine the number of points from the set of all 

points that fit with a predefined tolerance
(4)    If the fraction of the number of inliers over the total 

number of points in the set exceeds a predefined 
threshold t, re-estimate the model parameters using 
all the identified inliers and terminate the process

(5)   Otherwise, repeat steps 1 through 4
The number of iterations is chosen high enough to ensure 

that the probability that at least one of the sets of random 
samples does not include an outlier.

2.5 Blending

Once we have registered all the input images with respect 
to each other, we need to decide how to produce the final 
stitched image. First, a compositing surface, which is flat and 
cylindrical, is chosen. Next, it is decided how to blend them to 
create the panorama.

For stitching fewer images, a natural approach is to select 
one of the images as the reference and then warping all the 
images according to the reference coordinate system. The 
colors are adjusted to compensate for the exposure differences 
between images. The images are blended together and the 
seam line is adjusted to minimize the visibility of seams 
between images (Shashank et al., 2014).

3. The Optimized FAST Descriptor

Before image registration and alignment, the mathematical 
relationship between the pixels coordinates of one image with 
respect to the others need to be established (Pravenaa and 
Mennaka, 2016). Both direct and feature based techniques are 
considered for image stitching.

In the direct technique, all the pixel intensities of the image 

Fig. 3. Space intersection
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are compared with each other. In this technique, each pixel is 
compared with each other, and therefore it is a very complex 
technique. The main advantage of the direct method is that they 
make optimal use of the information available in the image 
alignment. They measure the contribution of every pixel in the 
image. The main limitation of this technique is a limited range 
of convergence between one another (Adel et al., 2014).

In feature-based techniques, all the feature points in an 
image pair are compared with that of every feature in another 
image, using local descriptors. The different steps required for 
image stitching based on feature-based techniques are feature 
extraction, registration, and blending. Feature-based methods 
begin by establishing correspondences between points, 
lines, edges, corners, or other shapes (Adel et al., 2014). The 
uniqueness of the robust detectors incorporates invariance to 
the noisy image, scale invariance, translation invariance, and 
rotation transformations. There are several feature detection 
techniques, such as SIFT, SURF, and FAST (Rosten and 
Drummond, 2006).

3.1 SIFT

The SIFT operator is one of the most frequently used 
technique for region detection. It was first conceived by Lowe, 
(2004) and is currently employed for various applications 
(Lingua et al., 2009). The SIFT algorithm for image feature 
generation is invariant to image translation, scaling, and 
rotation and is partially invariant to illumination changes and 
affine projection (Alhwarin et al., 2008). SIFT can be used to 
identify similar objects in other images. When checking for 
an image match, two sets of key-point descriptors are given 
as input to the NNS (Nearest Neighbor Search) problem 
and closely matching key-point descriptors are produced. 
The SIFT algorithm consists of four stages (Aghdasi et al., 
2009; Kai et al., 2012; Adel et al., 2014; Bheda et al., 2014). 
Scale-space local extrema detection, Key-point localization, 
Orientation assignment, Key-point descriptor. Though it is 
comparatively slow, the SIFT algorithm is a robust algorithm 
for image comparison. The running time of a SIFT algorithm 
is high as it takes more time to compare two images. 

3.2 SURF

SURF is an algorithm developed for local, similarity 

invariant representation and comparison (Bay et al., 2008). In 
addition, Bay demonstrated that the SURF detector is several 
times faster than SIFT and more robust against different 
image transformations (Besbes et al., 2015). The SURF 
algorithm is performed in three main steps (Adel et al., 
2014; Pravenaa and Mennaka, 2016). Detection, Description, 
Matching. The main advantage of the SURF approach lies in 
its fast computation, enabling real-time applications such as 
tracking and object recognition. It improves upon the speed 
of the SIFT detection process by giving priority to the quality 
of the detected points. It gives more focus on speeding-up the 
matching step.

3.3 Optimization of FAST algorithm

The FAST technique identifies interest points in an image 
(Adel et al., 2014). The pixel A is recognized as a FAST 
corner if the neighborhood around pixel A has sufficient 
pixels, which are in a gray that is different from the pixel A. 
The FAST detector compares the pixels only on a circle of 
fixed radius around a point. A point is classified as a corner 
only if a large set of pixels that are significantly brighter 
or darker than the central point can be found in a circle of 
fixed radius around the point. As shown in Fig. 4, the FAST 
algorithm considers a circle of 16 pixels around the corner 
candidate p. An interesting point is indicated when all the 
pixels in a set of n contiguous pixels in the circle are brighter 
than the candidate pixel Ip plus a threshold t, or all the pixels 
are darker than Ip ≤ t shown in Eq. (3). The corner detector 
should satisfy the following criteria (Arya, 2015).

(1)   The detected positions should be consistent, insensitive 
to the variation of noise, and they should not move 
when multiple images of the same scene are acquired.

(2)   Accuracy: The corners should be detected as close as 
possible to the correct positions.

(3)  Speed: The corner detector should be fast enough. 
FAST is an accurate and fast algorithm that yields good 

positional accuracy and high point reliability.

x pI I t− > (3)
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The two major limitations of the FAST detector are that 
multiple features are detected adjacent to one another and 
that the features cannot be detected if the image has no 
significant difference in gray-scale values. It means that, 
we do not obtain the pixel p, which satisfies the condition 
of being brighter or darker than a circle of 9 or 12 pixels. In 
other words, p satisfying the above equation does not exist. 
To overcome this limitation, the image data need to be pre-
processed.

First, by considering the overall gray value of the 
input images, all the positions where there are significant 
differences in gray values are found. The region that includes 
16 pixels around the pixel that satisfies the conditions of 
the algorithm is obtained like that shown in Fig. 4. Second, 
using the FAST algorithm, the position in the image where no 
pixels have been found is chosen and compared with 16 pixels 
surrounding it, to decrease the cost time. The optimized FAST 

Fig. 4. FAST corner detection

algorithm used in this paper is summarized in Fig. 5. With the 
input image, the portions that have significant difference in 
gray value will be found, that portions are saved as the point 
p (h, v). Then, the region include 16 pixels around the position 
p (h, v) will be obtained. Set the value for other pixels to find 
the difference from the region of 16 pixels. From that, all new 
values are saved to new matrix M (1: h, 1: v). From now, the 
input data of algorithm is not original input image which was 
processed, the input data for algorithm is matrix M.

4. Experiment

The thermal camera (FLIR SC660 shown in Fig. 6) 
provides a combination of infrared and visible spectrum 
images that have superior quality and temperature 
measurement accuracy, and features a contrast optimizer, 
laser pointer, voice annotation, and a host of other advanced 
features. It can measure the temperature by taking a thermal 
image, sequence video, or video. The FLIR SC660 has a 
high-resolution pixel detector of 640×480 pixels having a 
high accuracy. Table 1 shows the technical specifications of 
FLIR SC660 Flir-Systems, 2008().

Input images

Output feature points of images
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17

for i = 1 to h (h, v is size of image)
    for j =1 to v
            find the portions that have significant difference 
            in gray value
        save the point p (h, v) 
         obtain the region including 16 pixels around the 

position p (h, v)
        set the value for other pixels to find the difference 
from the region of 16 pixels
        save all new values to a new matrix M (1:h,1:v)
    next j
next i
do FAST algorithm on M:
        choose the pixel p in the region of 16 pixels
          compare p (h, v) with 16 pixels around in matrix M
                if p is max or min
            choose p as the candidate point
            save p
     end if

Fig. 5. Procedure for the algorithm

Parameters
IR resolution 640 × 480 pixels
Thermal sensitivity/
NETD <30 mK @ +30 °C

FOV/ Minimum focus 
distance 24° × 18°/ 0.3 m

Spatial resolution 
(IFOV) 0.65 mrad

Image frequency 30 Hz
Temperature range -40 °C to +1500 °C

Accuracy ±1 °C or ±1% of reading for 
limited temperature range

Table 1. Thermal camera SC660 specification
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The data shown in Fig. 7 was obtained at Chonnam 
National University by using the thermal camera FLIR 
SC660. The data used in this study is a sequence video. The 
video was obtained by the camera at Buildings 2 and 3 of 
Chonnam National University, from right to left, towards 
the vertical surfaces of the building. Before obtaining the 
data, some camera parameters need to be set up. Some basic 
parameters are shown in Table 2.

Table 2. Setup parameters for thermal camera 
before obtaining video

Parameters

Object Emissivity (0 to 1) 0.95

Distance (m) 20

Atmosphere Atmospheric Temp (°C) 7

Relative Humidity (%) 72

External Optics Temperature (°C) 10

Transmission (0 to 1) 1

Acquisition date 2015-12-09

To obtain the control points on the walls of the building, 
a total station was used to measure the points. The points 
were evenly distributed on the walls of Buildings 2 and 3. In 
addition, we obtained sufficient control points in each image 
and in the overlapping areas of the photos. Specifically, at 
least 6 control points for each image and 3 common points in 
the overlapping region.

5. Result and Discussion

5.1 Comparison of the DLT and BA results

The data include 10 images captured by the thermal 
camera FLIR SC660. From each image, two positions 
were chosen for the comparison; thus, 20 positions were 
chosen. After calculating the 6DOF using the DLT and BA 
methods, the position accuracy in Table 4 was evaluated 
using the camera’s position and rotation parameters in Table 
3. Finally, the root mean square error was calculated. For 
the DLT method, the errors dx and dy are 5.82 and 6.26, 
respectively. For the BA method, dx and dy are 1.37 and 
0.65, respectively. From the comparison of the results 
obtained by the DLT and BA methods, it can be observed 
that the values obtained using both the methods show a fair 
accuracy. However, the results obtained by the BA method 
are more precise. The BA method provides precise and easily 
interpretable results, because it uses accurate statistical 
error models and supports a sound, well-developed quality 
control methodology.

5.2 Discrepancy

After obtaining the 6EOP results, we considered the 
discrepancy between the corresponding points of one image 
and the overlapping image. The trend of inconsistency errors 
was determined in this way.

Fig. 6. Thermal camera FLIR SC660

Fig. 7. Thermal image obtained by thermal camera SC660
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Image Omega (°) Phi (°) Kappa (°) X (m) Y (m) Z (m)
1 112.476 -74.367 -328.678 40.036 -59.065 22.292
2 112.556 -74.423 29.755 38.146 -52.261 23.308
3 114.276 -72.990 29.451 33.517 -33.952 19.325
4 109.784 -73.269 23.641 32.346 -28.453 17.064
5 115.417 -72.701 28.597 30.801 -23.243 18.966
6 114.525 -71.355 25.757 27.184 -11.522 20.168
7 110.909 -70.807 20.194 21.556 5.6230 21.105
8 109.316 -69.353 17.517 19.954 10.544 21.329
9 119.716 -68.130 25.143 15.031 23.524 19.418
10 118.788 -63.626 23.014 14.269 26.802 17.999

Images 
and

Points

Observed 
image points 

(pixel)
Calculated by 
DLT (pixel)

Calculated by 
BA (pixel)

Accuracy of DLT 
(pixel)

Accuracy of BA 
(pixel)

x y x-DLT y-DLT x-BA y-BA dx-DLT dy-DLT dx-BA dy-BA
1 5 361 329 360.88 330.24 361.08 329.01 0.12 -1.24 -0.08 -0.01
1 8 190 335 187.29 335.61 189.98 335.42 2.71 -0.61 0.02 -0.42
2 5 484 363 483.84 363.42 484.74 362.51 0.16 -0.42 -0.74 0.49
2 8 314 375 312.59 374.25 314.96 374.06 1.41 0.75 -0.96 0.94
3 5 492 254 491.53 253.27 490.80 254.18 0.47 0.73 1.2 -0.18
3 8 373 263 373.00 262.10 373.71 261.56 0 0.90 -0.71 1.44
4 5 493 368 492.62 370.02 492.28 367.46 0.38 -2.02 0.72 0.54
4 8 201 237 203.11 236.93 201.27 236.90 -2.11 0.07 -0.27 0.10
5 5 296 296 294.26 294.39 295.46 296.06 1.74 1.61 0.54 -0.06
5 8 184 389 190.61 384.21 183.77 388.01 -6.61 4.79 0.23 0.99
6 5 424 345 416.69 342.50 423.77 345.66 7.31 2.50 0.23 -0.66
6 8 260 324 275.18 345.26 260.33 323.82 -15.18 -21.26 -0.33 0.18
7 5 423 262 429.75 248.81 422.81 261.74 -6.75 13.19 0.19 0.26
7 8 319 215 310.85 212.26 319.06 214.84 8.15 2.74 -0.06 0.16
8 5 434 217 430.05 221.65 434.01 217.13 3.95 -4.65 -0.01 -0.13
8 8 435 434 436.97 427.04 435.03 433.64 -1.97 6.96 -0.03 0.36
9 5 461 343 450.48 342.22 458.31 343.62 10.52 0.78 2.69 -0.62
9 8 289 265 288.93 265.07 293.01 266.24 0.07 -0.07 -4.01 -1.24
10 5 386 204 392.91 204.1 388.75 203.61 -6.91 -0.1 -2.75 0.39
10 8 150 213 152.97 213.1 150.39 213.71 -2.97 -0.1 -0.39 -0.71

RMSE 5.82 6.26 1.37 0.65

Table 3. Exterior orientation parameters of the images from the BA method

Table 4. Accuracy of DLT and BA results
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determine the trend of inconsistency errors we considered 
two cases. Fig. 8 shows the check points in the horizontal 
direction, while Fig. 10 shows in the vertical direction. In 
the horizontal case, 22 positions were chosen from the left 
through the center and to the right. In the vertical case, 16 
positions were chosen from the top through the center and to 
the bottom. As seen in Fig. 9, for the points from 4 to 12, the 
error is less than 0.2. However, the other points (1 to 3 and 
13 to 22) under the marginal portion of the overlap show a 
low accuracy, with the error greater than 0.23. In particular, 
the points from 18 to 22 have a significantly low accuracy. 
Similar to the first case, in Fig. 11, the points from 4 to 12 
have a high accuracy; however, point 1 and the points from 
13 to 16 have a low accuracy. It shows that the position in 
the central part of the overlap between the two images has 
a consistently high accuracy, and the marginal portion has a 
low accuracy. It can be inferred that the greater the distance 
from the center, the lower will be the accuracy.

5.3 Extraction results

To verify whether the optimization FAST algorithm is 
feasible, the paper compares the classical SIFT algorithm 
and SURF algorithm with the FAST detection algorithm. 
Two groups of images shown in Fig. 12 were considered 
for validation. The first set of pictures was taken from the 
thermal video (with a size 640×480 and a depth of 8 bit); 
two images of this group were overlapped. The second set 
of pictures has a size 225×225 with a depth of 24 bit; two 
images of this group are rotated 90 degrees, and all the 
images are in jpg format.

    

    

Figs. 9 and 11 describe the trend discrepancy between 
corresponding points of two overlapping images. To 

Fig. 8. Positions chosen in the overlapping images for 
checking accuracy in the horizontal direction

Fig. 10. Positions chosen in the overlapping images for 
checking accuracy in the vertical direction

(a) 

Fig. 9. Discrepancy between corresponding points in the 
horizontal direction

Fig. 11. Discrepancy between corresponding points in the 
vertical direction
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Fig. 13 shows the results of the image matching based on 
FAST and optimized FAST algorithms of the two sets. From 
Fig. 13(a), which shows the FAST algorithm matching result, 
it can be seen that only 2 points were extracted, because 
the gray value does not have any significant difference. 
However, when the optimized FAST was used, more points 
were extracted, as shown in Fig. 13(b). Similarly, for the 
second set, shown in Figs. 13(c) and 13(d), we can see that the 
optimized FAST algorithm has more points than the FAST 
algorithm. The details are listed in Table 5.

   

(b)

Fig. 12. Two sets of original images. a) 640×640 
and 8 bit; b) 225×225 and 24 bit

(a)

(b)

(c)

(d)

Fig. 13. The results of image matching based on FAST 
and optimized FAST algorithms: (a) FAST algorithm 
of 640×480 image; (b) Optimized FAST algorithm of 

640×480 image; (c) FAST algorithm of 225×225 image; 
(d) Optimized FAST algorithm of 225×225 image

Table 5. The results of different algorithms

Algorithm

Stereo image 1
640 × 480 (8 bit)

Stereo image 2
225 × 225 (24 bit)

Number 
of 

inliers
Matching 
Time(s)

Number
 of 

inliers
Matching 
Time(s)

SIFT 367  1.502 12 0.752

SURF 36  1.281 92 0.263

FAST 2 0.359 92 0.146

Optimized 
FAST

49 0.366 103 0.160
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By comparing the data of Table 5, we can see that the time 
consumption for the SIFT algorithm is much higher than 
those of SURF and FAST algorithms (Refer to the Fig. 14). 
The time taken for the SIFT algorithm for Stereo 1 is 1.502 s, 
while those for the SURF and FAST algorithms are just 1.281 
s and 0.359 s, respectively. Similarly, for Stereo 2, the time for 
SIFT is 0.752 s, which is thrice that of SURF and several times 
that of FAST. In both cases, the FAST algorithm is the fastest, 
(0.359 s and 0.146 s). This is a good technique; however, the 
major limitation is that it cannot detect the features when 
the images have no significant difference in gray values, 
like Stereo 1. Thus, the number of inliers is only 2. After 
we optimized the FAST, the number of features became 49, 
while the time consumption was similar. In the second case, 
the optimized FAST can detect more number of features than 
the FAST algorithm, thereby ensuring accuracy. In this case, 
the FAST detected 92 features, while the optimized FAST 
detected 103 features, thus proving the effectiveness of data 
processing before applying the FAST algorithm.

5.4 Thermal mosaicking

Fig. 15 shows all the images (10 images) in the mosaicking 
process. Fig. 16 shows the resulting image after mosaicking 
and referenced by the heat color. All the images in the thermal 
video were stitched. From this image, some temperature 
information about the building will be obtained, as the light-
red color indicates areas that have a temperature of 11–15 °C. 
The rooms, which have a higher temperature than the other 
areas, were part of the laboratory in which an experiment was 
being conducted. Some windows, which have a temperature 
around 9 °C, show that there was a heat leakage. In winter, 
all the rooms have heaters, causing the inside temperature to 

be higher than the outside temperature. The windows have 
an inability to retain heat, which is the cause of heat leakage.

     

6. Conclusion

This paper proposed an improvement of the feature 
extraction algorithm based on the FAST algorithm. By 
finding positions that have significant differences in gray 
values in a region of 16 pixels around the position, and by 
assigning a new value for the other pixels and comparing 
those pixels with others, the optimized FAST algorithm 
increases the number of feature points that are detected. The 
universal applicability of the optimized FAST algorithm is 
verified by two sets of images, especially with the thermal 
images. It shows that the optimized FAST algorithm 
overcame the disadvantages of the FAST algorithm. In 
addition, the paper has presented the steps required to mosaic 
two images together by using the optimized FAST algorithm 
to detect the feature points. The results of mosaicking show a 
comprehensive view of two buildings in Chonnam National 
University, obtained from thermal images. With this result, 
it is easier to cover the surface temperature distribution of a 
building, enabling managers to have a better overview of the 
object zone and take correct decisions.

However, the time cost of the optimized algorithm is 

Fig. 16. Thermal image after mosaicking

Fig. 15. All the images from the thermal video

Fig. 14. Comparison of cost time between algorithms
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greater than the FAST algorithm and the multiple features are 
detected still adjacent to one another. Therefore, the future 
research should focus on reducing the time and the feature 
adjacent.
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