• Title/Summary/Keyword: Image Scaling

Search Result 352, Processing Time 0.026 seconds

Geometric analysis and anti-aliasing filter for stereoscopic 3D image scaling (스테레오 3D 영상 스케일링에 대한 기하학적 분석 및 anti-aliasing 필터)

  • Kim, Wook-Joong;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.638-649
    • /
    • 2009
  • Image resizing (or scaling) is one of the most essential issues for the success of visual service because image data has to be adapted to the variety of display features. For 2D imaging, the image scaling is generally accomplished by 2D image re-sampling (i.e., up-/down-sampling). However, when it comes to stereoscopic 3D images, 2D re-sampling methods are inadequate because additional consideration on the third dimension of depth is not incorporated. Practically, stereoscopic 3D image scaling is process with left/right images, not stereoscopic 3D image itself, because the left/right Images are only tangible data. In this paper, we analyze stereoscopic 3D image scaling from two aspects: geometrical deformation and frequency-domain aliasing. A number of 3D displays are available in the market and they have various screen dimensions. As we have more varieties of the displays, efficient stereoscopic 3D image scaling is becoming more emphasized. We present the recommendations for the 3D scaling from the geometric analysis and propose a disparity-adaptive filter for anti-aliasing which could occur during the image scaling process.

Weighted DCT-IF for Image up Scaling

  • Lee, Jae-Yung;Yoon, Sung-Jun;Kim, Jae-Gon;Han, Jong-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.790-809
    • /
    • 2019
  • The design of an efficient scaler to enhance the edge data is one of the most important issues in video signal applications, because the perceptual quality of the processed image is sensitively affected by the degradation of edge data. Various conventional scaling schemes have been proposed to enhance the edge data. In this paper, we propose an efficient scaling algorithm for this purpose. The proposed method is based on the discrete cosine transform-based interpolation filter (DCT-IF) because it outperforms other scaling algorithms in various configurations. The proposed DCT-IF incorporates weighting parameters that are optimized for training data. Simulation results show that the quality of the resized image produced by the proposed DCT-IF is much higher than that of those produced by the conventional schemes, although the proposed DCT-IF is more complex than other conventional scaling algorithms.

A Study on the Analysis Method of City Image : Focusing on the Image Comparison between Cities by MDS (도시 이미지 분석 기법에 관한 연구 : MDS(Multidimensional Scaling)에 의한 도시 간 이미지 비교)

  • 임승빈;최형석;변재상
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 2004
  • Rapid economic development in Korea caused functions of city functions such as concentration of population, deterioration of the quality of living environment and traffic congestion. Korean cities have lost their identity becausr they are merged functionally and physically with neighboring cities, forming one mesa-city. Unified shape and disorganized streets of cities often cause confusion among foreigners and visitors. It is very difficult for them to find their image in strange cities. It is, however, important to correctly analyze the image and meaning of cities for understanding its identity. The purpose of this study is to develop a method to analyze the city image by focusing on some of the main cities in Korea. For this purpose, the adjective questionnaire and multi-dimension scaling (MDS) are applied to the analysis of city image. Image analysis graph by MDS can visually present the general and integrate images. The results of this study are summarized as follows: The important factors for interpretation of city image are historical and industrial character. Seoul, Taegu and Pusan have industrial and complex city images. Kongju has historical city image, while Changwon has a modern image. Chuncheon belongs to a soft and small image. Each city has an alternative solution against a negative image, according to the image analysis graph.

A HDR Up-scaling Algorithm Using Undecimated Wavelet Transform and Retinex Method (비간축 웨이브릿 변환과 레티넥스 기법을 이용한 HDR 업스케일링 알고리즘)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1395-1403
    • /
    • 2022
  • Lately, over 4K high definition and high dynamic range (HDR) display devices are popularized, various interpolation and HDR methods have been researched to expand the size and the dynamic range. Since most of the legacy low resolution (LR) images require both an interpolation and a HDR tone mapping methods, the two processes should be subsequently applied. Therefore, the proposed algorithm presents a HDR up-scaling algorithm using undecimated wavelet transform and Retinex method, which transfers a LR image of low dynamic range (LDR) into the high resolution (HR) with HDR. The proposed algorithm consists of an up-scaling scheme increasing the image size and a tone mapping scheme expanding the dynamic range. The up-scaling scheme uses the undecimated version of the simplest Haar wavelet analysis for the 8-directional interpolation and the change region is extracted during the analysis. This region information is utilized in controlling the surround functions' size of the proposed tone mapping using MSRCR, to enhance the pixels of around the edges that are dominant feature of the subjective image quality. As the results, the proposed algorithm can apply an up-scaling and tone mapping processes in accordance with the type of pixel.

An Objective Image Quality Measurement Considering Skipped & Estimated Positions of Pixels in Image Scaling (영상 크기 변환에서 화소들의 생략 및 추정 위치를 고려한 객관적 영상 화질 측정)

  • Kim, Won-Hee;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.934-942
    • /
    • 2013
  • Image scaling is used for a variety of real-life applications. In order to evaluate the performance of transform functions, the image quality are compared together before and after processing. For the objective evaluation of the transform functions, the exact criterion of image quality is required, and various aspects approaches are practically performed. However, few researches have been conducted on image quality measurement considering the position of pixels that are skipped or newly generated in the process of the image scaling. Therefore this paper focuses on the objective image quality measurement for positions of skipped or estimated pixels in the image scaling. The proposed method generated new image quality measure considering the positional changes using a conventional measure and evaluated sensitivity about positional changes. Through this experiments, it is observed that conventional image quality measurement is definitely affected by positional changes of a skipped and estimated pixels. It is also confirmed that the proposed method is an objective criterion to represent image quality for positional changes of skipped or estimated pixels. The proposed method can be used as a criterion to evaluate the performance of image restoration or enhancement functions.

A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System (POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교)

  • Jae Kwon Eem
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

Conversion of Fisheye Image to Perspective Image Using Nonlinear Scaling Function (비선형 스케일링 함수를 이용한 어안 영상의 원근 변환)

  • Kim, Tae-Woo;Cho, Tae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.117-121
    • /
    • 2009
  • The fisheye image acquired with a fisheye camera has wider field of view than a general use camera. But large distortion of the object in the image requires conversion of the fisheye image to the perspective image because of user's difficult perception. The existing Ishii's method[1] has the problem that the object can has sire and geometrical distortion in the transformed image because it uses equidistance projection. This paper presented a conversion technique of the fisheye image to the perspective image using sealing function. In the experiments, it was shown that our method reduced size and geometrical distortion by applying the scaling function.

SPIHT Image Compression Using Biorthogonal Multiwavelets on [-1,1]

  • Yoo Sang-Wook;Kwon Seong-Geun;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.776-782
    • /
    • 2005
  • This paper presents a SPIHT image compression method using biorthogonal multi wavelets on [-1,1]. A family of biorthogonal scaling vectors is constructed using fractal interpolation function, and the associated biorthogonal multi wavelets are constructed. This paper uses biorthogonal multi wavelets to be supported in [-1,1] associated with biorthogonal scaling vectors to be supported in [-1,1]. The scaling vectors and wavelets remain biorthogonal when restricted to integer intervals, making them well suited for bounded domains. The experiment results of simulation of the proposed image compression using biorthogonal multiwavelets on [-1,1] based on SPIHT were found to be excellent PSNR for LENA and PEPPERS images except for BABOON image than already existing single wavelets and DGHM multi wavelets.

  • PDF

Cascaded Residual Densely Connected Network for Image Super-Resolution

  • Zou, Changjun;Ye, Lintao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2882-2903
    • /
    • 2022
  • Image super-resolution (SR) processing is of great value in the fields of digital image processing, intelligent security, film and television production and so on. This paper proposed a densely connected deep learning network based on cascade architecture, which can be used to solve the problem of super-resolution in the field of image quality enhancement. We proposed a more efficient residual scaling dense block (RSDB) and the multi-channel cascade architecture to realize more efficient feature reuse. Also we proposed a hybrid loss function based on L1 error and L error to achieve better L error performance. The experimental results show that the overall performance of the network is effectively improved on cascade architecture and residual scaling. Compared with the residual dense net (RDN), the PSNR / SSIM of the new method is improved by 2.24% / 1.44% respectively, and the L performance is improved by 3.64%. It shows that the cascade connection and residual scaling method can effectively realize feature reuse, improving the residual convergence speed and learning efficiency of our network. The L performance is improved by 11.09% with only a minimal loses of 1.14% / 0.60% on PSNR / SSIM performance after adopting the new loss function. That is to say, the L performance can be improved greatly on the new loss function with a minor loss of PSNR / SSIM performance, which is of great value in L error sensitive tasks.

A color compensation method for a projector considering non-flatness of color screen and mean lightness of the projected image (유색 스크린의 굴곡과 영상의 평균밝기를 고려한 프로젝터용 색 보정 기법)

  • Sung, Soo-Jin;Lee, Cheol-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.213-224
    • /
    • 2010
  • In this paper, we propose an algorithm both geometric correction using a grid point image and radiometric adaptive projection that dependent upon the luminance of the input image and that of the background. This method projects and captures the grid point image then calculates the geometrically corrected position by difference between the two images. Next, to compensate color, a corrected image is calculated by the ratio divided luminance of an input image by luminance of arbitrary surface. In addition, we found the scaling factor which controls the contrast to avoid clipping error. At this time, the scaling factor is dependent on mean image lightness when background is determined. Experimental results show that the proposed method achieves good performance and is able to reduce the perceived color clipping and artifacts, better approximating the projection on a white screen.