• Title/Summary/Keyword: Image Retrieval Query

Search Result 211, Processing Time 0.023 seconds

Content-based Image Retrieval System (내용기반 영상검색 시스템)

  • Yoo, Hun-Woo;Jang, Dong-Sik;Jung, She-Hwan;Park, Jin-Hyung;Song, Kwang-Seop
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.363-375
    • /
    • 2000
  • In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.

  • PDF

Content-based Image Retrieval using Color and Block Region Features (컬러와 블록영역 특징을 이용한 내용기반 화상 검색)

  • 최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.610-618
    • /
    • 2002
  • This paper presents a new image retrieval method that is based on color space and block region information. The color space information of images can be obtained by color binary set, and the block region information can be obtained by regional segmentation and feature. The candidate images are decided by comparing with color features and its binary set of query image and image feature database for retrieval. Particularly, it is possible that the retrieval using similarity-measurements has the weights of color spatial distribution arid its objective block region features. This retrieval method using color spatial and block region features is shown with the effectiveness on the result of implementation on image database with 6,000 images.

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.

Design and Implementation of a COncept-based Image Retrieval System: COIRS (개념 기반 이미지 정보 검색 시스템 COIRS의 설계 및 구현)

  • Yang, Hyung-Jeong;Kim, Ho-Young;Yang, Jae-Dong;Hur, Dae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3025-3035
    • /
    • 1998
  • In this paper, we describe the design and implementationof COIRS COncept,based Image Retricval System). It differs from extant content-based image retrieval systems in that it enables users to query based on concepts- it allows users to get images concepmally relevant. A concept is basically an aggregation of promitive objects in an image. For such a cencept based image retrieval functionality. COIRS aglopts an image descriptor called triple and includes a triple thesaurus used for capturing concepts. There are four facilities in COIRS: a visual image indeses a triple thesaurus, an inverted fiel, and a user query interface. The visnal image indeser facilitates object laeling and the percification of positionof objects. It is an assistant tool designed to minimize manual work when indexing images. The thesarrus captires the concepts by analyzing triples, thereby extracting image semantics. The triples are then for formalating queries as well as indexing images. The user query interiare enables users to formulate...

  • PDF

A Design and Implementation of Intelligent Image Retrieval System using Hybrid Image Metadata (혼합형 이미지 메타데이타를 이용한 지능적 이미지 검색 시스템 설계 및 구현)

  • 홍성용;나연묵
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.209-223
    • /
    • 2000
  • As the importance and utilization of multimedia data increases, it becomes necessary to represent and manage multimedia data within database systems. In this paper, we designed and implemented an image retrieval system which support efficient management and intelligent retrieval of image data using concept hierarchy and data mining techniques. We stored the image information intelligently in databases using concept hierarchy. To support intelligent retrievals and efficient web services, our system automatically extracts and stores the user information, the user's query information, and the feature data of images. The proposed system integrates user metadata and image metadata to support various retrieval methods on image data.

  • PDF

Development of Content-Based Trademark Retrieval System on the World Wide Web

  • Kim, Young-Sum;Kim, Yong-Sung;Kim, Whoi-Yul;Kim, Myung-Joon
    • ETRI Journal
    • /
    • v.21 no.1
    • /
    • pp.40-54
    • /
    • 1999
  • In this paper, we describe a new trademark retrieval system based upon the content or the shape of trademark. The system has an on-line graphical user interface for the World Wide Web (WWW) that allows user to provide a query in forms of a sketch or a visual image to search for similar trademarks from database. User interfaces for the WWW were implemented by utilizing HTML and Java applets. The query can occur in arbitrary size and orientation. A shape representation scheme invariant to scale and rotation was developed to measure the similarity between two trademarks using the magnitude of Zernike moments as a feature set. Performance evaluation has been carried out with a database of 3,000 trademarks. It takes only about 0.6 second for the retrieval on a 200 MHz Pentium PC. The average recall of the original one among top 30 candidates queried by noisy or deformed images was 100%.

  • PDF

Image Retrieval Method Based on IPDSH and SRIP

  • Zhang, Xu;Guo, Baolong;Yan, Yunyi;Sun, Wei;Yi, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1676-1689
    • /
    • 2014
  • At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.

Image Retrieval Scheme using Spatial Similarity and Annotation (공간 유사도와 주석을 이용한 이미지 검색 기법)

  • 이수철;황인준
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.134-144
    • /
    • 2003
  • Spatial relationships among objects are one of the important ingredients for expressing constraints of an image in image or multimedia retrieval systems. In this paper, we propose a unified image retrieval scheme using spatial relationships among objects and their features. The proposed scheme is especially effective in computing similarity between query image and images in the database. Also, objects and their spatial relationships are captured and annotated in XML. It could give better precision and flexibility in retrieving images from database. Finally, we have implemented a prototype system for retrieving images based on proposed technique and showed some of the experiment results.

Implementation of System Retrieving Multi-Object Image Using Property of Moments (모멘트 특성을 이용한 다중 객체 이미지 검색 시스템 구현)

  • 안광일;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.454-460
    • /
    • 2000
  • To retrieve complex data such as images, the content-based retrieval method rather than keyword based method is required. In this paper, we implemented a content-based image retrieval system which retrieves object of user query effectively using invariant moments which have invariant properties about linear transformation like position transition, rotation and scaling. To extract the shape feature of objects in an image, we propose a labeling algorithm that extracts objects from an image and apply invariant moments to each object. Hashing method is also applied to reduce a retrieval time and index images effectively. The experimental results demonstrate the high retrieval efficiency i.e precision 85%, recall 23%. Consequently, our retrieval system shows better performance than the conventional system that cannot express the shale of objects exactly.

  • PDF

An Object-Based Image Retrieval Techniques using the Interplay between Cortex and Hippocampus (해마와 피질의 상호 관계를 이용한 객체 기반 영상 검색 기법)

  • Hong Jong-Sun;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.95-102
    • /
    • 2005
  • In this paper, we propose a user friendly object-based image retrieval system using the interaction between cortex and hippocampus. Most existing ways of queries in content-based image retrieval rely on query by example or query by sketch. But these methods of queries are not adequate to needs of people's various queries because they are not easy for people to use and restrict. We propose a method of automatic color object extraction using CSB tree map(Color and Spatial based Binary をn map). Extracted objects were transformed to bit stream representing information such as color, size and location by region labelling algorithm and they are learned by the hippocampal neural network using the interplay between cortex and hippocampus. The cells of exciting at peculiar features in brain generate the special sign when people recognize some patterns. The existing neural networks treat each attribute of features evenly. Proposed hippocampal neural network makes an adaptive fast content-based image retrieval system using excitatory learning method that forwards important features to long-term memories and inhibitory teaming method that forwards unimportant features to short-term memories controlled by impression.