• Title/Summary/Keyword: Image Matching

Search Result 2,168, Processing Time 0.036 seconds

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.

Post Processing to Reduce Wrong Matches in Stereo Matching

  • Park, Hee-Ju;Lee, Suk-Bae
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 2001
  • Although many kinds of stereo matching method have been developed in the field of computer vision and photogrammetry, wrong matches are not easy to avoid. This paper presents a new method to reduce wrong matches after matching, and experimental results are reported. The main idea is to analyze the histogram of the image attribute differences between each pair of image patches matched. Typical image attributes of image patch are the mean and the standard deviation of gray value for each image patch, but there could be other kinds of image attributes. Another idea is to check relative position among potential matches. This paper proposes to use Gaussian blunder filter to detect the suspicious pair of candidate match in relative position among neighboring candidate matches. If the suspicious candidate matches in image attribute difference or relative position are suppressed, then many wrong matches are removed, but minimizing the suppression of good matches. The proposed method is easy to implement, and also has potential to be applied as post processing after image matching for many kinds of matching methods such as area based matching, feature matching, relaxation matching, dynamic programming, and multi-channel image matching. Results show that the proposed method produces fewer wrong matches than before.

  • PDF

A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences (공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

Image Matching with Characteristic Information of Gray Value and Interest Points

  • Lee, Dong-Cheon;Yom, Jae-Hong;Choi, Sun-Ok;Kim, Su-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1467-1469
    • /
    • 2003
  • Image matching is fundamental process to identify conjugate points on the stereo images. However, standard methods or general solutions for matching problem have not been found yet, in spite of long history. Quality of the matching basically depends on uniqueness of the matching entity and robustness of the algorithm. In this study, conjugate points were extracted by implementing interest operator, then area based matching method was applied to the topographical characteristics of the gray value as the matching entities. The matching entities were utilized based on the concept of the intrinsic image.

  • PDF

Image matching by Wavelet Local Extrema (웨이브릿 국부 최대-최소값을 이용한 영상 정합)

  • 박철진;김주영;고광식
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.589-592
    • /
    • 1999
  • Matching is a key problem in computer vision, image analysis and pattern recognition. In this paper a multiscale image matching algorithm by wavelet local extrema is proposed. This algorithm is based on the multiscale wavelet transform of the curvature which can utilize both the information of local extrema positions and magnitudes of transform results. This method has advantages in computational cost to a single scale image matching. It is also rotation-, translation-, and scale-independent image matching method. This matching can be used for the recognition of occluded objects.

  • PDF

Extraction of Characteristic Information for Image Matching (영상매칭을 위한 특성정보 추출)

  • 이동천;염재홍;김정우;이용욱
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.171-176
    • /
    • 2004
  • Image matching is fundamental process in photogrammetry and computer vision to identify and to measure corresponding features on the multiple images. Uniqueness of the matching entities and robustness of the algorithm are the key issues that have influence on quality of the matching result. The optimal solution could be obtained by utilizing appropriate matching entities in the first place. In this study, candidate matching points were extracted by interest operator, and an area-based matching method was applied with characteristics of the gray value distribution as the matching entities. The characteristic information is based on the concept of "intrinsic image" (or parameter image). The information was utilized as additional and/or complementary matching entities. Matching on interest points with the characteristic information resulted in high quality of matching because matching windows were created with surrounding pixels of the interest points that contain distinct and unique features. The experiment shows that matching quality and reliability increase by exploiting interest operator, and the characteristic information has potential to be matching entity.

  • PDF

Noise Control Boundary Image Matching Using Time-Series Moving Average Transform (시계열 이동평균 변환을 이용한 노이즈 제어 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Moon, Yang-Sae;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.327-340
    • /
    • 2009
  • To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.

Perceptual Bound-Based Asymmetric Image Hash Matching Method

  • Seo, Jiin Soo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1619-1627
    • /
    • 2017
  • Image hashing has been successfully applied for the problems associated with the protection of intellectual property, management of large database and indexation of content. For a reliable hashing system, improving hash matching accuracy is crucial. In order to improve the hash matching performance, we propose an asymmetric hash matching method using the psychovisual threshold, which is the maximum amount of distortion that still allows the human visual system to identity an image. A performance evaluation over sets of image distortions shows that the proposed asymmetric matching method effectively improves the hash matching performance as compared with the conventional Hamming distance.

Research of Matching Performance Improvement for DEM generation from Multiple Images (다중 영상으로부터 DEM 생성을 위한 정합기법의 성능향상 연구)

  • Rhee, Soo-Ahm;Kim, Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.101-109
    • /
    • 2011
  • This paper describes the attempts to improve the performance of an image matching method for multiple image. Typically, matching between two images is performed by using correlation between a reference and corresponding images. The proposed multiple image matching algorithm performs matching in an object space, chooses the image closest to the true vertical image as a reference image, calculates the correlation based on the chosen reference image. The algorithm also detects occluded regions automatically and keep them from matching. We could find that it is possible to create high quality DEM by this method, regardless of the location of image. From the performance improvement experiments through the occlusion detection, we could confirm the possibility of a more accurate representation of 3D information.

The Comparison of the SIFT Image Descriptor by Contrast Enhancement Algorithms with Various Types of High-resolution Satellite Imagery

  • Choi, Jaw-Wan;Kim, Dae-Sung;Kim, Yong-Min;Han, Dong-Yeob;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • Image registration involves overlapping images of an identical region and assigning the data into one coordinate system. Image registration has proved important in remote sensing, enabling registered satellite imagery to be used in various applications such as image fusion, change detection and the generation of digital maps. The image descriptor, which extracts matching points from each image, is necessary for automatic registration of remotely sensed data. Using contrast enhancement algorithms such as histogram equalization and image stretching, the normalized data are applied to the image descriptor. Drawing on the different spectral characteristics of high resolution satellite imagery based on sensor type and acquisition date, the applied normalization method can be used to change the results of matching interest point descriptors. In this paper, the matching points by scale invariant feature transformation (SIFT) are extracted using various contrast enhancement algorithms and injection of Gaussian noise. The results of the extracted matching points are compared with the number of correct matching points and matching rates for each point.