• Title/Summary/Keyword: Image Learning

Search Result 3,175, Processing Time 0.025 seconds

A study on the image design PBL class that can be used for e-Digital contents production

  • Ahn, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.77-82
    • /
    • 2018
  • In this paper, we propose an improvement plan to increase the learning effect and satisfaction through the PBL - related video design class. PBL To prepare for the Fourth Industrial Revolution era, we must acquire diverse knowledge and skills to discover problems and solve them creatively. Therefore, various learning methods are being studied, and one of them is PBL learning. PBL is a learner-centered education that explores problems that may arise from specific topics other than existing curriculum-based education methods and finds solutions to problems. In this study, two lectures on video design related to video contents and image contents were taught in PBL class, and PBL class problem was analyzed and the improvement plan was studied.

Effective Analsis of GAN based Fake Date for the Deep Learning Model (딥러닝 훈련을 위한 GAN 기반 거짓 영상 분석효과에 대한 연구)

  • Seungmin, Jang;Seungwoo, Son;Bongsuck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.137-141
    • /
    • 2022
  • To inspect the power facility faults using artificial intelligence, it need that improve the accuracy of the diagnostic model are required. Data augmentation skill using generative adversarial network (GAN) is one of the best ways to improve deep learning performance. GAN model can create realistic-looking fake images using two competitive learning networks such as discriminator and generator. In this study, we intend to verify the effectiveness of virtual data generation technology by including the fake image of power facility generated through GAN in the deep learning training set. The GAN-based fake image was created for damage of LP insulator, and ResNet based normal and defect classification model was developed to verify the effect. Through this, we analyzed the model accuracy according to the ratio of normal and defective training data.

Map Detection using Deep Learning

  • Oh, Byoung-Woo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.61-72
    • /
    • 2020
  • Recently, researches that are using deep learning technology in various fields are being conducted. The fields include geographic map processing. In this paper, I propose a method to infer where the map area included in the image is. The proposed method generates and learns images including a map, detects map areas from input images, extracts character strings belonging to those map areas, and converts the extracted character strings into coordinates through geocoding to infer the coordinates of the input image. Faster R-CNN was used for learning and map detection. In the experiment, the difference between the center coordinate of the map on the test image and the center coordinate of the detected map is calculated. The median value of the results of the experiment is 0.00158 for longitude and 0.00090 for latitude. In terms of distance, the difference is 141m in the east-west direction and 100m in the north-south direction.

Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy

  • Chang Bong Yang;Sang Hoon Kim;Yun Jeong Lim
    • Clinical Endoscopy
    • /
    • v.55 no.5
    • /
    • pp.594-604
    • /
    • 2022
  • Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applications of AI in gastrointestinal endoscopy are diverse. Computer-aided diagnosis has achieved remarkable outcomes with recent improvements in machine-learning techniques and advances in computer performance. Despite some hurdles, the implementation of AI-assisted clinical practice is expected to aid endoscopists in real-time decision-making. In this summary, we reviewed state-of-the-art AI in the field of gastrointestinal endoscopy and offered a practical guide for building a learning image dataset for algorithm development.

Physics Image Analysis by Sematic Method and Interest in Physics of Freshman Students in the Engineering College (의미 분석법에 의한 공과대학 신입생의 물리 이미지 및 관심 여부)

  • Song, Yongwook
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.214-224
    • /
    • 2020
  • Physics image and interest are factors that influence physics learning. Freshmen enter an engineering college under various learning conditions when they were in high school. Understanding physics image and interest according to characteristics of freshmen will help college physics education. The purpose of this study is to investigate the physics image and interest of freshmen in an engineering college according to their gender and physics course completion in high school and discuss the educational implications of college students on physics learning. The subjects of the study are 664 first grade students in engineering college. We analyzed physics image and interest of students according to gender and physics course completion in high school. Physics image is analyzed using semantic analysis. As a result of the analysis, the physics image is different according to the physics course completion. Interest in Physics depends on gender and physics course completion. Finally, we discuss the educational implications of college physics learning for engineering students.

Post-processing Algorithm Based on Edge Information to Improve the Accuracy of Semantic Image Segmentation (의미론적 영상 분할의 정확도 향상을 위한 에지 정보 기반 후처리 방법)

  • Kim, Jung-Hwan;Kim, Seon-Hyeok;Kim, Joo-heui;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.23-32
    • /
    • 2021
  • Semantic image segmentation technology in the field of computer vision is a technology that classifies an image by dividing it into pixels. This technique is also rapidly improving performance using a machine learning method, and a high possibility of utilizing information in units of pixels is drawing attention. However, this technology has been raised from the early days until recently for 'lack of detailed segmentation' problem. Since this problem was caused by increasing the size of the label map, it was expected that the label map could be improved by using the edge map of the original image with detailed edge information. Therefore, in this paper, we propose a post-processing algorithm that maintains semantic image segmentation based on learning, but modifies the resulting label map based on the edge map of the original image. After applying the algorithm to the existing method, when comparing similar applications before and after, approximately 1.74% pixels and 1.35% IoU (Intersection of Union) were applied, and when analyzing the results, the precise targeting fine segmentation function was improved.

Slow Sync Image Synthesis from Short Exposure Flash Smartphone Images (단노출 플래시 스마트폰 영상에서 저속 동조 영상 생성)

  • Lee, Jonghyeop;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • Slow sync is a photography technique where a user takes an image with long exposure and a camera flash to enlighten the foreground and background. Unlike short exposure with flash and long exposure without flash, slow sync guarantees the bright foreground and background in the dim environment. However, taking a slow sync image with a smartphone is difficult because the smartphone camera has continuous and weak flash and can not turn on flash if the exposure time is long. This paper proposes a deep learning method that input is a short exposure flash image and output is a slow sync image. We present a deep learning network with a weight map for spatially varying enlightenment. We also propose a dataset that consists of smartphone short exposure flash images and slow sync images for supervised learning. We utilize the linearity of a RAW image to synthesize a slow sync image from short exposure flash and long exposure no-flash images. Experimental results show that our method trained with our dataset synthesizes slow sync images effectively.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

Joint Demosaicing and Super-resolution of Color Filter Array Image based on Deep Image Prior Network

  • Kurniawan, Edwin;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2022
  • In this paper, we propose a learning based joint demosaicing and super-resolution framework which uses only the mosaiced color filter array(CFA) image as the input. As the proposed method works only on the mosaicied CFA image itself, there is no need for a large dataset. Based on our framework, we proposed two different structures, where the first structure uses one deep image prior network, while the second uses two. Experimental results show that even though we use only the CFA image as the training image, the proposed method can result in better visual quality than other bilinear interpolation combined demosaicing methods, and therefore, opens up a new research area for joint demosaicing and super-resolution on raw images.

Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

  • Jung-Hee, Seo
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2024
  • Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.