• Title/Summary/Keyword: Image Feature

Search Result 3,610, Processing Time 0.029 seconds

Content-based Image Retrieval using Color Correlogram from a Segmented Image (분할된 영상에서의 칼라 코렐로그램을 이용한 내용기반 영상검색)

  • An, Myung-Seok;Cho, Seok-Je
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.507-512
    • /
    • 2001
  • Recently, there has been studied on feature extraction method for efficient content-based image retrieval. Especially, many researchers have been studying on extracting from color information, because of its advantages. This paper proposes a feature and its extraction method based on color information in an image. The proposed method is computed from the image segmented into two parts: the complex part and the plan part. Our experiments show that the performance of the proposed method is better as compared with the original color correlogram method.

  • PDF

Refinement of Disparity Map using the Rule-based Fusion of Area and Feature-based Matching Results

  • Um, Gi-Mun;Ahn, Chung-Hyun;Kim, Kyung-Ok;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.304-309
    • /
    • 1999
  • In this paper, we presents a new disparity map refinement algorithm using statistical characteristics of disparity map and edge information. The proposed algorithm generate a refined disparity map using disparity maps which are obtained from area and feature-based Stereo Matching by selecting a disparity value of edge point based on the statistics of both disparity maps. Experimental results on aerial stereo image show the better results than conventional fusion algorithms in the disparity error. This algorithm can be applied to the reconstruction of building image from the high resolution remote sensing data.

  • PDF

An Extracting and Indexing Schema of Compressed Medical Images (축소변환된 의료 이미지의 질감 특징 추출과 인덱싱)

  • 위희정;엄기현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.328-331
    • /
    • 2000
  • In this paper , we propose a texture feature extraction method of reduce the massive computational time on extracting texture, features of large sized medical such as MRI, CT-scan , and an index structure, called GLTFT, to speed up the retrieval performance. For these, the original image is transformed into a compressed image by Wavelet transform , and textural features such as contrast, energy, entropy, and homogeneity of the compressed image is extracted by using GLCM(Gray Level Co-occurrence Metrix) . The proposed index structure is organized by using the textural features. The processing in compressed domain can give the solution of storage space and the reduction of computational time of feature extracting . And , by GLTFT index structure, image retrieval performance can be expected to be improved by reducing the retrieval range . Our experiment on 270 MRIs as image database shows that shows that such expectation can be got.

  • PDF

Development of Web Based Mold Discrimination System using the Matching Process for Vision Information and CAD DB (비전정보와 캐드DB 매칭을 통한 웹 기반 금형 판별 시스템 개발)

  • Choi, Jin-Hwa;Jeon, Byung-Cheol;Cho, Myeong-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.37-43
    • /
    • 2006
  • The target of this study is development of web based mold discrimination system by matching vision information with CAD database. The use of 2D vision image makes possible speedy mold discrimination from many databases. The image processing such as preprocessing, cleaning is done for obtaining vivid image with object information. The web-based system is a program which runs to exchange messages between a server and a client by making of ActiveX control and the result of mold discrimination is shown on web-browser. For effective feature classification and extraction, signature method is used to make sensible information from 2D data. As a result, the possibility of proposed system is shown as matching feature information from vision image with CAD database samples.

A Study on the Extraction of Knowledge for Image Understanding (영상이해를 위한 지식유출에 관한 연구)

  • 곽윤식;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.757-772
    • /
    • 1993
  • This paper describes the knowledge extraction for image understanding in knowledge based system. The current set of low level processes operate on the numerical pixel arrays, to segment the image into region and to convert the image into directional image, and to calculate feature for these regions. The current set of intermedate level processes operate on the results of earlier knowledge source to build more complex representations of the data. We have grouped into thee categories : feature based classification, geometric token relation, perceptual organization and grouping.

  • PDF

Combining Empirical Feature Map and Conjugate Least Squares Support Vector Machine for Real Time Image Recognition : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This paper describes a process of developing commercial real time image recognition system with company. In this paper we will make a system that is combining an empirical kernel map method and conjugate least squares support vector machine in order to represent images in a low-dimensional subspace for real time image recognition. In the traditional approach calculating these eigenspace models, known as traditional PCA method, model must capture all the images needed to build the internal representation. Updating of the existing eigenspace is only possible when all the images must be kept in order to update the eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images immediately after the update. By experimental results we can show that empirical kernel map has similar accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement than traditional one. This experimental result shows that proposed model is suitable for commercial real time image recognition system.

A Distance Estimation Method of Object′s Motion by Tracking Field Features and A Quantitative Evaluation of The Estimation Accuracy (배경의 특징 추적을 이용한 물체의 이동 거리 추정 및 정확도 평가)

  • 이종현;남시욱;이재철;김재희
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.621-624
    • /
    • 1999
  • This paper describes a distance estimation method of object's motion in soccer image sequence by tracking field features. And we quantitatively evaluate the estimation accuracy We suppose that the input image sequence is taken with a camera on static axis and includes only zooming and panning transformation between frames. Adaptive template matching is adopted for non-rigid object tracking. For background compensation, feature templates selected from reference frame image are matched in following frames and the matched feature point pairs are used in computing Affine motion parameters. A perspective displacement field model is used for estimating the real distance between two position on Input Image. To quantitatively evaluate the accuracy of the estimation, we synthesized a 3 dimensional virtual stadium with graphic tools and experimented on the synthesized 2 dimensional image sequences. The experiment shows that the average of the error between the actual moving distance and the estimated distance is 1.84%.

  • PDF

Person Recognition Using Gait and Face Features on Thermal Images (열 영상에서의 걸음걸이와 얼굴 특징을 이용한 개인 인식)

  • Kim, Sa-Mun;Lee, Dae-Jong;Lee, Ho-Hyun;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Gait recognition has advantage of non-contact type recognition. But It has disadvantage of low recognition rate when the pedestrian silhouette is changed due to bag or coat. In this paper, we proposed new method using combination of gait energy image feature and thermal face image feature. First, we extracted a face image which has optimal focusing value using human body rate and Tenengrad algorithm. Second step, we extracted features from gait energy image and thermal face image using linear discriminant analysis. Third, calculate euclidean distance between train data and test data, and optimize weights using genetic algorithm. Finally, we compute classification using nearest neighbor classification algorithm. So the proposed method shows a better result than the conventional method.

Nonlinear Optimization Method for Multiple Image Registration (다수의 영상 특징점 정합을 위한 비선형 최적화 기법)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.634-639
    • /
    • 2012
  • In this paper, we propose nonlinear optimization method for feature matching from multiple view image. Typical solution of feature matching is by solving linear equation. However this solution has large error due to nonlinearity of image formation model. If typical nonlinear optimization method is used, complexity grows exponentially over the number of features. To make complexity lower, we use sparse Levenberg-Marquardt nonlinear optimization for matching of features over multiple view image.

3D View Synthesis with Feature-Based Warping

  • Hu, Ningning;Zhao, Yao;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5506-5521
    • /
    • 2017
  • Three-dimensional video (3DV), as the new generation of video format standard, can provide the viewers with a vivid screen sense and a realistic stereo impression. Meanwhile the view synthesis has become an important issue for 3DV application. Differently from the conventional methods based on depth, in this paper we propose a new view synthesis algorithm, which can employ the correlation among views and warp in the image domain only. There are mainly two contributions. One is the incorporation of sobel edge points into feature extraction and matching, which can obtain a better stable homography and then a visual comfortable synthesis view compared to SIFT points only. The other is a novel image blending method proposed to obtain a better synthesis image. Experimental results demonstrate that the proposed method can improve the synthesis quality both in subjectivity and objectivity.