• Title/Summary/Keyword: Image Feature

Search Result 3,610, Processing Time 0.026 seconds

An Improved Feature Extraction Technique of Asterias Amurensis using 6-Directional Scanning and Centers of Region (6-방향 스캐닝과 영역 중심점을 이용한 아무르불가사리의 개선된 특징 추출 기법)

  • Shin, Hyun-Deok;Chu, Ran-Heui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • Korea has developed coastal farming industry due to the environmental characteristics that its three sides are surrounded by sea. The damage of coastal farming industry caused by Asterias Amurensis with very strong reproductive rate and predaciousness has increased sharply every year. Moreover, Asterias Amurensis preys on living fish and shellfish and so the damage of fishermen is vern greater. In this paper, a method is proposed to extract effectively the features from the image of Asterias Amurensis acquired in the water. Because the proposed method extracts convex features using 6-directional scanning, it selects a fewer number of feature candidates than the conventional one. In addition, after selecting candidate concave points using the extracted convex features and centers of region, the final concave features are extracted. Due to the features of the starfish which lives in groups, individuals of the starfish in the input image are concentrated. Thus, it is significant to minimize the number of feature candidates extracted from the input image. The experimental results indicate an improvement of the proposed feature extraction method over the conventional one as evidenced by the fact that the feature extract was 88 % of the feature candidates.

Correction of Missing Feature Points for 3D Modeling from 2D object images (2차원 객체 영상의 3차원 모델링을 위한 손실 특징점 보정)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2844-2851
    • /
    • 2015
  • How to recover from the multiple 2D images into 3D object has been widely studied in the field of computer vision. In order to improve the accuracy of the recovered 3D shape, it is more important that noise must be minimized and the number of image frames must be guaranteed. However, potential noise is implied when tracking feature points. And the number of image frames which is consisted of an observation matrix usually decrease because of tracking failure, occlusions, or low image resolution, and so on. Therefore, it is obviously essential that the number of image frames must be secured by recovering the missing feature points under noise. Thus, we propose the analytic approach which can control directly the error distance and orientation of missing feature point by the geometrical properties under noise distribution. The superiority of proposed method is demonstrated through experimental results for synthetic and real object.

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.

Facial Feature Extraction using Nasal Masks from 3D Face Image (코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • This paper proposes a new method for facial feature extraction, and the method could be used to normalize face images for 3D face recognition. 3D images are much less sensitive than intensity images at a source of illumination, so it is possible to recognize people individually. But input face images may have variable poses such as rotating, Panning, and tilting. If these variances ire not considered, incorrect features could be extracted. And then, face recognition system result in bad matching. So it is necessary to normalize an input image in size and orientation. It is general to use geometrical facial features such as nose, eyes, and mouth in face image normalization steps. In particular, nose is the most prominent feature in 3D face image. So this paper describes a nose feature extraction method using 3D nasal masks that are similar to real nasal shape.

A Hardware Design of Feature Detector for Realtime Processing of SIFT(Scale Invariant Feature Transform) Algorithm in Embedded Systems (임베디드 환경에서 SIFT 알고리즘의 실시간 처리를 위한 특징점 검출기의 하드웨어 구현)

  • Park, Chan-Il;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.86-95
    • /
    • 2009
  • SIFT is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vertices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3D image reconstructions and intelligent vision system for robots. In this paper, we implement a hardware to sift feature detection algorithm for real time processing in embedded systems. We estimate that the hardware implementation give a performance 25ms of $1,280{\times}960$ image and 5ms of $640{\times}480$ image at 100MHz. And the implemented hardware consumes 45,792 LUTs(85%) with Synplify 8.li synthesis tool.

Object Detection in a Still FLIR Image using Intensity Ranking Feature (밝기순위 특징을 이용한 적외선 정지영상 내 물체검출기법)

  • Park Jae-Hee;Choi Hak-Hun;Kim Seong-Dae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.37-48
    • /
    • 2005
  • In this paper, a new object detection method for FLIR images is proposed. The proposed method consists of intensity ranking feature and a classification algerian using the feature. The intensity ranking feature is a representation of an image, from which intensity distribution is regularized. Each object candidate region is classified as object or non-object by the proposed classification algorithm which is based on the intensity ranking similarity between the candidate and object training images. Using the proposed algorithm pixel-wise detection results can be obtained without any additional candidate selection algorithm. In experimental results, it is shown that the proposed ranking feature is appropriate for object detection in a FLIR image and some vehicle detection results in the situation of existing noise, scale variation, and rotation of the objects are presented.

Construction of 2D Image Mosaics Using Quasi-feature Point (유사 특징점을 이용한 모자이킹 영상의 구성)

  • Kim, Dae-Hyeon;Choe, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.4
    • /
    • pp.381-391
    • /
    • 2001
  • This paper presents an efficient approach to build an image mosaics from image sequences. Unlike general panoramic stitching methods, which usually require some geometrical feature points or solve the iterative nonlinear equations, our algorithm can directly recover the 8-parameter planar perspective transforms. We use four quasi-feature points in order to compute the projective transform between two images. This feature is based on the graylevel distribution and defined in the overlap area between two images. Therefore the proposed algorithm can reduce the total amount of the computation. We also present an algorithm lot efficiently matching the correspondence of the extracted feature. The proposed algorithm is applied to various images to estimate its performance and. the simulation results present that our algorithm can find the correct correspondence and build an image mosaics.

  • PDF

Image alignment method based on CUDA SURF for multi-spectral machine vision application (다중 스펙트럼 머신비전 응용을 위한 CUDA SURF 기반의 영상 정렬 기법)

  • Maeng, Hyung-Yul;Kim, Jin-Hyung;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1041-1051
    • /
    • 2014
  • In this paper, we propose a new image alignment technique based on CUDA SURF in order to solve the initial image alignment problem that frequently occurs in machine vision applications. Machine vision systems using multi-spectral images have recently become more common for solving various decision problems that cannot be performed by the human vision system. These machine vision systems mostly use markers for the initial image alignment. However, there are some applications where the markers cannot be used and the alignment techniques have to be changed whenever their markers are changed. In order to solve these problems, we propose a new image alignment method for multi-spectral machine vision applications based on SURF extracting image features without depending on markers. In this paper, we propose an image alignment method that obtains a sufficient number of feature points from multi-spectral images using SURF and removes outlier iteratively based on a least squares method. We further propose an effective preliminary scheme for removing mismatched feature point pairs that may affect the overall performance of the alignment. In addition, we reduce the execution time by implementing the proposed method using CUDA based on GPGPU in order to guarantee real-time operation. Simulation results show that the proposed method is able to align images effectively in applications where markers cannot be used.

A Study on Features Analysis for Retrieving Image Containing Personal Information on the Web (인터넷상에서 개인식별정보가 포함된 영상 검색을 위한 특징정보 분석에 관한 연구)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.91-101
    • /
    • 2011
  • Internet is becoming increasingly popular due to the rapid development of information and communication technology. There has been a convenient social activities such as the mutual exchange of information, e-commerce, internet banking, etc. through cyberspace on a computer. However, by using the convenience of the internet, the personal IDs(identity card, driving license, passport, student ID, etc.) represented by the electronic media are exposed on the internet frequently. Therefore, this study propose a feature extraction method to analyze the characteristics of image files containing personal information and a image retrieval method to find the images using the extracted features. The proposed method selects the feature information from color, texture, and shape of the images, and the images as searched by similarity analysis between feature information. The result which it experiments from the image which it acquires from the web-based image DB and correct image retrieval rate is 89%, the computing time per frame is 0.17 seconds. The proposed method can be efficiently apply a system to search the image files containing personal information and to determine the criteria of exposure of personal information.

Region-based Image Retrieval Algorithm Using Image Segmentation and Multi-Feature (영상분할과 다중 특징을 이용한 영역기반 영상검색 알고리즘)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.57-63
    • /
    • 2009
  • The rapid growth of computer-based image database, necessity of a system that can manage an image information is increasing. This paper presents a region-based image retrieval method using the combination of color(autocorrelogram), texture(CWT moments) and shape(Hu invariant moments) features. As a color feature, a color autocorrelogram is chosen by extracting from the hue and saturation components of a color image(HSV). As a texture, shape and position feature are extracted from the value component. For efficient similarity confutation, the extracted features(color autocorrelogram, Hu invariant moments, and CWT moments) are combined and then precision and recall are measured. Experiment results for Corel and VisTex DBs show that the proposed image retrieval algorithm has 94.8% Precision, 90.7% recall and can successfully apply to image retrieval system.