• 제목/요약/키워드: Image Dictionary

검색결과 78건 처리시간 0.032초

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

Domain Adaptation Image Classification Based on Multi-sparse Representation

  • Zhang, Xu;Wang, Xiaofeng;Du, Yue;Qin, Xiaoyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2590-2606
    • /
    • 2017
  • Generally, research of classical image classification algorithms assume that training data and testing data are derived from the same domain with the same distribution. Unfortunately, in practical applications, this assumption is rarely met. Aiming at the problem, a domain adaption image classification approach based on multi-sparse representation is proposed in this paper. The existences of intermediate domains are hypothesized between the source and target domains. And each intermediate subspace is modeled through online dictionary learning with target data updating. On the one hand, the reconstruction error of the target data is guaranteed, on the other, the transition from the source domain to the target domain is as smooth as possible. An augmented feature representation produced by invariant sparse codes across the source, intermediate and target domain dictionaries is employed for across domain recognition. Experimental results verify the effectiveness of the proposed algorithm.

사전 학습과 공간-주파수 분석을 사용한 방향 적응적 에일리어싱 및 잡음 제거 (Directionally Adaptive Aliasing and Noise Removal Using Dictionary Learning and Space-Frequency Analysis)

  • 채은정;이은성;정혜진;백준기
    • 전자공학회논문지
    • /
    • 제51권8호
    • /
    • pp.87-96
    • /
    • 2014
  • 본 논문은 다양한 영상 획득 과정에서 발생하는 에일리어싱 성분과 잡음을 동시에 제거하기 위하여 공간-주파수 분석 기반사전 학습(dictionary learning)을 사용한 방향 적응적 영상 개선 알고리듬을 제안한다. 제안된 기술은 i) 학습된 사전과 결합된 웨이블릿-푸리에 변환을 이용하여 에일리어싱 및 잡음 영역을 검출하는 단계와, ii) 검출된 영역에서 방향 적응적 계수 축소기법을 이용하여 에일리어싱을 제거하는 동시에 잡음을 억제하는 단계로 구성된다. 제안한 방법은 공간-주파수 성분을 동시에 분석하여 특정 위치와 특정 주파수 성분을 선택적으로 제거하기 때문에, 검출된 영역에서 에지 성분을 보존하면서 에일리어싱 제거와 잡음 억제를 가능하게 한다. 실험 결과를 근거로 제안된 방법은 기존 알고리듬들과 비교할 때 주요 고주파 성분들의 억제 및 아티펙트 발생을 최소화하며 에일리어싱과 잡음을 제거함으로써 디지털 영상의 리샘플링, 초고해상도 영상 생성, 로봇비전 등과 같은 다양한 영상 획득 장치에 적용될 수 있다.

Fast Matching Pursuit Method Using Property of Symmetry and Classification for Scalable Video Coding

  • Oh, Soekbyeung;Jeon, Byeungwoo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.278-281
    • /
    • 2000
  • Matching pursuit algorithm is a signal expansion technique whose efficiency for motion compensated residual image has already been demonstrated in the MPEG-4 framework. However, one of the practical concerns related to applying matching pursuit algorithm to real-time scalable video coding is its massive computation required for finding dictionary elements. In this respective, this paper proposes a fast algorithm, which is composed of three sub-methods. The first method utilizes the property of symmetry in 1-D dictionary element and the second uses mathematical elimination of inner product calculation in advance, and the last one uses frequency property of 2-D dictionary. Experimental results show that our algorithm needs about 30% computational load compared to the conventional fast algorithm using separable property of 2-D gabor dictionary with negligible quality degradation.

  • PDF

글자 영상을 위한 학습기반 초고해상도 기법 (Learning-based Super-resolution for Text Images)

  • 허보영;송병철
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.175-183
    • /
    • 2015
  • 본 논문은 글자 영상을 효과적으로 확대 (up-scaling)하기 위한 학습 기반 초고해상도 (super-resolution; SR) 기법을 제안한다. 제안 기법은 크게 학습 단계와 합성 단계로 나뉜다. 학습 단계에서 다양한 HR (high-resolution) /LR (low-resolution) 글자 영상 쌍들을 수집한다. LR영상들은 양자화를 하고, 충분히 많은 수의 HR-LR 블록쌍들을 추출한다. 양자화된 LR블록을 기준으로 블록 쌍들을 소정의 개수의 클래스들로 구분한다. 클래스 별로 최적의 2D-FIR 필터 계수를 계산하고, 양자화한 후색인용 LR 블록과 함께 사전에 저장한다. 합성 단계에서 입력 LR 영상 내 각 블록을 양자화한 후 사전 내 양자화된 LR블록들과 정합하여 가장 근사한 블록에 대응하는 FIR 필터계수를 선정한다. 마지막으로 선택된 FIR필터로 HR 블록을 합성하여 최종적인 HR영상을 생성한다. 또한, 우리는 잡음이 있는 글자 영상에 대응하기 위해 학습과정에서 잡음 세기에 따른 복수개의 사전들을 제작한다. 입력 LR 영상의 잡음 레벨에 맞는 사전을 선택하여 HR영상을 합성한다. 실험 결과는 제안 기법이 종래 기법보다 잡음이 없는 환경에서는 물론 잡음이 있는 환경에서 우수한 주관적/객관적 화질을 가짐을 보인다.

모바일 게임을 위한 개선된 무손실 이미지 압축 (An Improvement of Lossless Image Compression for Mobile Game)

  • 김세웅;조병호
    • 정보처리학회논문지B
    • /
    • 제13B권3호
    • /
    • pp.231-238
    • /
    • 2006
  • 본 논문에서는 모바일 게임의 전체 용량 중 상당 부분을 차지하는 이미지를 무손실로 압축하기 위한 방법을 제안하였다. 이미지의 압축률을 높이기 위해 실제로 압축을 수행하기 전에 전처리 과정에서 이미지를 재구성 한 후 RFC-1951에 정의된 Deflate 알고리즘으로 압축하였다. 전처리 과정에서는 이미지의 정보를 바탕으로 사전 기반 부호화의 특징인 사전의 크기를 얻고, 픽셀 패킹과 DPCM 예측 기법을 사용하여 이미지를 재구성하는 방법을 사용하여 일반적인 방법으로 압축할 때 보다 압축률을 향상시켰다. 제안된 압축 방법을 다양한 모바일 게임 이미지에 적용하여 압축률을 실험한 결과 기존 모바일 이미지 포맷에 비해 약 9.7%의 압축률이 향상됨을 보였다.

Cost Effective Image Classification Using Distributions of Multiple Features

  • Sivasankaravel, Vanitha Sivagami
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2154-2168
    • /
    • 2022
  • Our work addresses the issues associated with usage of the semantic features by Bag of Words model, which requires construction of the dictionary. Extracting the relevant features and clustering them into code book or dictionary is computationally intensive and requires large storage area. Hence we propose to use a simple distribution of multiple shape based features, which is a mixture of gradients, radius and slope angles requiring very less computational cost and storage requirements but can serve as an equivalent image representative. The experimental work conducted on PASCAL VOC 2007 dataset exhibits marginally closer performance in terms of accuracy with the Bag of Word model using Self Organizing Map for clustering and very significant computational gain.

이미지 사전과 동사기반 문장 생성 규칙을 활용한 보완대체 의사소통 시스템 구현 (Implementation of Augmentative and Alternative Communication System Using Image Dictionary and Verbal based Sentence Generation Rule)

  • 류제;한광록
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.569-578
    • /
    • 2006
  • 본 논문에서는 언어장애인이 쉽게 인식할 수 있는 이미지들을 이용한 보완대체 의사소통 시스템의 구현에 관하여 연구하였다. 특히 보완대체 의사소통 도구의 휴대성 및 이동성과 보다 유연한 형태의 의사소통 시스템 구현에 초점을 맞추었다. 이동성과 휴대성을 위하여 PDA와 같은 모바일 기기에서 운용될 수 있는 시스템을 구현하여 사용 장소의 제약에서 벗어나 여러 장소에서 일반인과 다름없는 의사소통을 할 수 있도록 하였으며, 용량이 큰 이미지 데이터의 저장 공간 한계를 극복하기 위하여 유선 또는 무선 인터넷 환경에서 클라이언트/서버 형태의 보완대체 의사소통 시스템을 설계하였다. 또한 사용자의 원활한 의사소통이 가능하도록 동사를 기준으로 하여 동사에 대응하는 명사들을 하위 범주화하여 이미지 사전을 구축하였다. 이를 위하여 문장을 구성하는데 가장 중요한 역할을 하는 품사인 동사에 초점을 맞추어 동사의 유형에 따라 생성되는 문장의 유형을 정규화 하였다.

지능형 검색엔진을 위한 색상 질의 처리 방안 (Color-related Query Processing for Intelligent E-Commerce Search)

  • 홍정아;구교정;차지원;서아정;여운영;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.109-125
    • /
    • 2019
  • 지능형 전자상거래 검색 엔진에 대한 관심이 커지면서, 검색 상품의 특징을 지능적으로 추출하고 활용하기 위한 연구들이 수행되고 있다. 특히 전자상거래 지능형 검색 엔진에서 상품을 검색 할 때, 제품의 색상은 상품을 묘사하는 중요한 특징 중에 하나이다. 따라서 사용자의 질의에 정확한 응답을 위해서는 사용자가 검색하려는 색상과 그 색상의 동의어 및 유의어에 대한 처리가 필요하다. 기존의 연구들은 색상 특징에 대한 동의어 처리를 주로 사전 방식으로 다뤄왔다. 하지만 이러한 사전방식으로는 사전에 등록되지 않은 색상 용어가 질의에 포함된 경우 처리하지 못하는 한계점을 가지고 있다. 본 연구에서는 기존에 사용하던 방식의 한계점을 극복하기 위하여, 실시간으로 인터넷 검색 엔진을 통해 해당 색상의 RGB 값을 추출한 후 추출된 색상정보를 기반으로 유사한 색상명들을 출력하는 모델을 제안한다. 본 모델은 우선적으로 기본적인 색상 검색을 위해 671개의 색상명과 각 RGB값이 저장된 색상 사전을 구축하였다. 본 연구에서 제시한 모델은 특정 색상을 검색하는 것으로 시작하며, 검색된 색상이 색상 사전 내 존재하는 지 유무를 확인한다. 사전 내에 검색한 색상이 존재한다면, 해당 색상의 RGB 값이 기준 값으로 사용된다. 만일 색상사전 내에 존재하지 않는다면, Google 이미지 검색 결과를 크롤링하여 각 이미지의 특정 영역 내 RGB값들을 군집화하여 구한 평균 RGB값을 검색한 색상의 기준 값으로 한다. 기준 RGB값을 앞서 구축한 색상 사전 내의 모든 색상의 RGB 값들과 비교하여 각 R, G, B 값에 있어서 ${\pm}50$ 내의 색상 목록을 정렬하고, RGB값 간의 유클리디안 거리 유사도를 활용하여 최종적으로 유사한 색 상명들을 출력한다. 제안 방안의 유용성을 평가하기 위해 실험을 진행하였다. 피설문자들이 생각하는 300 개의 색상 이름과 해당 색상 값을 얻어, 본 연구에서 제안한 방안을 포함한 총 네가지 방법을 통해 얻은 RGB 값들과 피설문자가 지정한 RGB값에 대한 비교를 진행했다. 인간의 눈을 반영하는 측정 기준인 CIELAB의 유클리드안거리는 평균 13.85로 색상사전만을 활용한 방안의 30.88, 한글 동의어사전 사이트인 워드넷을 추가로 활용한 방안의 30.38에 비해 비교적 낮은 색상 간의 거리 값을 보였다. 연구에서 제시하는 방안에서 군집화 과정을 제외한 방안의 색 차는 13.88로 군집화 과정이 색 차를 줄여준다는 것을 확인할 수 있었다. 본 연구에서는 기존 동의어 처리 방식인 사전 방식이 지닌 한계에서 벗어나기 위해, 사전 방식에 새로운 색상명에 대한 실시간 동의어 처리 방식을 결합한 RGB값 기반의 새로운 색상 동의어 처리 방안을 제안한다. 본 연구의 결과를 활용하여 전자상거래 검색 시스템의 지능화에 크게 기여할 수 있을 것이다.

드론영상에서 구조요청자 자동추출 방안: 도심지역 촬영영상을 중심으로 (Automatic Extraction of Rescue Requests from Drone Images: Focused on Urban Area Images)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.37-44
    • /
    • 2019
  • In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.