Park, Durk-Jong;Ahn, Sang-Il;Chun, Yong-Sik;Kim, Eun-Kyou
Journal of Astronomy and Space Sciences
/
제28권4호
/
pp.299-304
/
2011
As more satellites are designed to downlink their observed image data through the X-band frequency band, it is inevitable that the occupied bandwidth of a target satellite will overlap with that of other X-band downlink satellites. For sun-synchronized low earth orbit satellites, in particular, it can be expected that two or more satellites be placed within the looking angle of a ground station antenna at the same time. Due to the overlapping in the frequency band, signals transmitted from the adjacent satellites act as interferers, leading to degraded link performance between target satellite and ground station. In this paper, link analysis was initiated by modeling the radiation pattern of ground station antenna through a validated Jet Propulsion Laboratory peak envelope model. From the relative antenna gain depending on the offset angle from center axis of maximum antenna directivity, the ratio of received interference signal level to the target signal level was calculated. As a result, it was found that the degradation increased when the offset angle was within the first point of radiation pattern. For a 7.3 m antenna, serious link degradation began at an offset angle of 0.4 degrees. From this analysis, the link performance of the coming satellite passes can be recognized, which is helpful to establish an operating procedure that will prevent the ground station from receiving corrupted image data in the event of a degraded link.
In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.
디지탈 변환과 기기간의 전송 영향으로 화질이 떨어진 디지탈 영상의 복구는 잡음 발생 및 그 역 과정의 모형화를 통해 이루어낼 수 있다. 스캐너로 읽혀진 서류 영상이나 위성 사진에서 잡음 및 반점을 제거하는 과정이 좋은 예이다. 그러나 잡음 발생의 비선형성은 그 역 과정의 이론적 이해를 어렵게한다. 본 논문에서는 충격 잡음에의해 화질이 떨어진 이진 서류 영상의 복구 방법들을 심층 분석하는 것에 촛점을 맞추었다. 본 연구 결과에 의하면 이진 서류 영상의 잡음 제거 방식으로 '가중 중앙값' 여과기와 '리' 여과기가 다른 여과기에 비해 효과적임을 보여준다. 반면 '웨이브렛' 여과 방식은 타 방식보다 100여배의 시간이 소요되어 비효율적이다. 본 논문에서는 가중 중앙값 여과기에 쓰이는 가중치에 대한 연구 결과를 제시하였다.
카메라로 촬영한 야외 일반 영상에서 텍스트 이미지를 찾아내고 그 내용을 인식하는 기술은 로봇 비전, 시각 보조 등의 기반으로 활용될 수 있는 매우 중요한 기술이다. 하지만 텍스트 이미지가 저해상도인 경우에는 텍스트 이미지에 포함된 노이즈나 블러 등의 열화가 더 두드러지기 때문에 텍스트 내용 인식 성능의 하락이 발생하게 된다. 본 논문에서는 일반 영상에서의 저해상도 한글 텍스트에 대한 이미지 초해상화를 통해서 텍스트 인식 정확도를 개선하였다. 트랜스포머에 기반한 모델로 한글 텍스트 이미지 초해상화를 수행 하였으며, 직접 구축한 고해상도-저해상도 한글 텍스트 이미지 데이터셋에 대하여 제안한 초해상화 방법을 적용했을 때 텍스트 인식 성능이 개선되는 것을 확인하였다.
휴대용 무선 단말기에서 사용할 수 있으며, 기존 워터마크 방법이 가지고 있는 화질 저하의 문제점을 해결하기 위한 왜곡이 없는 이미지 인증을 위한 블록 기반 정보 은닉 기법을 제안하였다. 콘텐츠에 관련된 디지털 서명을 기존 영상의 하단에 동일한 화소 값을 가지는 $8{\times}8$ 블록단위의 영상으로 변환하여 추가하고 압축한 다음, 저장할 때 JPEG 파일 스트림의 영상 사이즈 부분을 카메라에 설정된 화소수로 바꿔줌으로써 삽입된 영상서명을 은닉한다. 실험결과, 제안한 방법은 영상서명 은닉을 위해 추가되는 비트가 0.1% 이하로 미세함을 검증하였으며, 화질저하 없이 영상인증이 가능한 방법임을 확인할 수 있었다. 나아가 제안방식은 의료영상, 스마트폰 및 DSLR 등 카메라를 사용하는 다양한 임베디드 시스템에 활용할 수 있다.
The effects of JPEG2000 compression on automated DSM extraction by using the area-based matching are evaluated in this paper. The influences on DSM heights obtained via PCI Geomatics OrthoEngine module are investigated using a single stereo model of 1:5,000 scale aerial photography at image resolution of 20 ${\mu}$m. The experiment design of elevation errors are computed for a range of compression rates from 2:1 to about 100:1, and the DSM which generated from uncompressed image is used as ‘ground truth’ data for comparison. The experimental results show that the standard deviation ranged from 0.9m to 2.5m with the compression ratio from 2 to 100. It is also observed that there is no significant degradation on DSM accuracy up to the compression ratio of 33.
현재 SPECT 영상에서 가장 많이 활용되는 콜리메이터는 저에너지 고해상도(low energy high resolution : LEHR) 콜리메이터이다. LEHR은 해상도에서 이점을 가지고 있으나 작은 구멍크기와 높은 차단막으로 인하여 높은 민감도 획득에 어려움이 있다. SPECT의 생산성 향상을 위해서는 LEHR보다 높은 민감도를 획득할 수 있는 콜리메이터를 사용하여 단위시간당 획득 카운트의 양을 늘림으로써 민감도를 향상시킬 필요가 있다. 본 연구에서는 LEHR보다 넓은 구멍을 가진 콜리메이터를 사용할 경우 고민감도 획득과 함께 발생하는 해상도 저하 문제를 해결하기 위한 시스템 모델을 개발하여 이를 반복적 영상재구성에 적용함으로써 저하된 해상도를 개선하는 데 그 목적이 있다. 방법으로는 시스템 모델에서 흔히 사용되는 평행빔 기반의 검출 확률계산 방식 대신 고민감도 콜리메이터 사용 시에 발생하는 퍼짐현상을 팬빔으로 모델링 하였다. 또한 검출확률에 대한 가중치를 거리에 대한 함수로 정의하여 팬빔모델에 적용함으로써 정확성을 향상시켰다. 시뮬레이션으로 생성된 사이노그램에 적용한 결과 본 연구에서 제안된 모델이 평행빔 모델에 비해 동일 카운트에서 유사한 해상도를 달성하면서 촬영시간을 단축시킬 수 있었으며, 동일 촬영시간에서는 해상도를 향상시킴을 알 수 있었다. 본 연구의 결과는 현재 부각되고 있는 반도체 기반 픽셀방식 검출기를 위한 픽셀형 콜리메이터의 해상도 향상에도 효과적으로 적용될 수 있다.
본 논문에서는 컴퓨터 픽업 모델에 대한 개선 방법을 제안한다. 기존의 컴퓨터 픽업은 레이 추적 모델에 입각한 핀홀 모델 방법을 사용한다. 비록 기존 방법이 매우 유용한 방법이지만 원거리에 위치한 물체를 픽업시 화질 열화가 발생한다. 이 문제를 해결하기 위해서 본 논문에서는 보다 정교한 픽업 방법을 제안한다. 제안된 픽업 모델은 실제 센서가 화소를 만들 때 입사하는 레이들을 누적하는 과정을 첨가함으로써 얻어지고, 구조적으로 에이리어싱 현상에 더 강인하다. 제안된 방법을 입증하기 위해서 컴퓨터 실험을 진행했고 그 결과는 제안된 방법이 기존 방법보다 우수함을 입증했다.
본 논문은 카메라의 고정 초점방식 렌즈를 통해 얻은 영상의 왜곡을 보상하여 왜곡된 이미지 좌표에서 본래의 좌표를 갖는 원영상으로 복원하는 연구이다. 이미지 센서의 다양한 영상 기기 발달과 활용으로 다방면의 산업분야에 확대 이용되고 있으나, 카메라의 소형화와 경량화 필요로 인해 렌즈의 굴곡에 의한 수신 영상의 왜곡이 영향을 미치는 경향이 많다. 특히, 입체 영상 카메라 응용 기기인 경우 좌, 우측 렌즈의 서로 다른 왜곡으로 입체감 저하 및 좌우 이미지 왜곡 등이 수반된다. 좌, 우측 카메라 수신 영상의 각 부분별로 본래의 좌표로 환산하는 근사식을 세우고 이들을 종합하는 방식으로 접근했다. 적응 뉴로-퍼지 추론시스템을 구성하여 소속 함수를 통해 분할하고 1차 Sugeno fuzzy 모델식으로 추정하여 좌, 우측 본래의 영상에 근접한 결과를 얻었다. 이로서 저가이며 소형 렌즈를 활용한 영상으로도 정확한 입체 영상 센싱 기능과 판별을 기대할 수 있게 된다.
석회석 채광을 위한 노천광산에는 산림훼손과 지형의 급격한 변화로 급경사의 절개면이 발생하기 때문에 안전사고 예방을 위한 기술개발과 많은 노력이 필요하다. 환경파괴를 줄이고, 노천광산의 안전한 개발을 위해서는 정확한 3차원 지형정보를 제작하여야 한다. 이에 본 연구에서는 무인항공기를 이용하여 사진촬영 및 3D 레이저 스캔을 수행하고, 노천광산에 대한 지형정보를 구축하였다. 무인항공기로 취득된 데이터의 처리를 통해 DSM (Digital Surface Model), DEM (Digital Elevation Model) 및 정사영상을 제작하였으며, 결과물을 GNSS (Global Navigation Satellite System) 측량성과와 비교하여 정확도를 평가함으로써 활용성을 제시하고자 하였다. 연구 결과 사진 및 3D 레이저 스캐닝 결과물의 정확도는 각각 11cm, 8cm 정도를 나타내었으며, 정확도 평가 결과와 데이터의 특징 분석을 통해 무인항공기를 이용한 노천광산의 지형정보 구축에 대한 활용성을 제시할 수 있었다. 향후 광물자원 개발 분야에 무인항공기를 이용한 정확한 3차원 지형정보의 구축 및 활용은 효과적인 광산관리 및 안전사고 예방에 크게 기여할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.