• Title/Summary/Keyword: Image Decoding

Search Result 222, Processing Time 0.023 seconds

A fast decoding algorithm using data dependence in fractal image (프래탈 영상에서 데이타 의존성을 이용한 고속 복호화 알고리즘)

  • 류권열;정태일;강경원;권기룡;문광석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2091-2101
    • /
    • 1997
  • Conventional method for fractal image decoding requires high-degree computational complexity in decoding propocess, because of iterated contractive transformations applied to whole range blocks. In this paper, we propose a fast decoding algorithm of fractal image using data depence in order to reduce computational complexity for iterated contractive transformations. Range of reconstruction image is divided into a region referenced with domain, called referenced range, and a region without reference to domain, called unreferenced range. The referenced range is converged with iterated contractive transformations, and the unreferenced range can be decoded by convergence of the referenced range. Thus the unreferenced range is called data dependence region. We show that the data dependence region can be deconded by one transformation when the referenced range is converged. Consequently, the proposed method reduces computational complexity in decoding process by executing iterated contractive transformations for the referenced range only.

  • PDF

DOMAIN BLOCK ESTIMATING FUNCTION FOR FRACTAL IMAGE CODING

  • Kousuke-Imamura;Yuuji-Tanaka;Hideo-Kuroda
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.57.2-62
    • /
    • 1999
  • Fractal coding is image compression techniques using one of image characteristics self-transformability. In fractal image coding, the encoding process is to select the domain block similar to a range block. The reconstructed image quality of fractal image coding depends on similitude between a range block and the selected domain block. Domain block similar to a range blocks. In fact, the error of the reconstructed image adds up the generated error in encoding process and the generated error in decoding process. But current domain block estimating function considered only the encoding error. We propose a domain block estimating function to consider not only the encoding error but also the decoding error. By computer simulation, it was verified to obtain the high quality reconstructed image.

A Fast Fractal Image Decoding Using the Encoding Algorithm by the Limitation of Domain Searching Regions (정의역 탐색영역 제한 부호화 알고리듬을 이용한 고속 프랙탈 영상복원)

  • 정태일;강경원;권기룡;문광석;김문수
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.125-128
    • /
    • 2000
  • The conventional fractal decoding was required a vast amount computational complexity. Since every range blocks was implemented to IFS(iterated function system). In order to improve this, it has been suggested to that each range block was classified to iterated and non-iterated regions. If IFS region is contractive, then it can be performed a fast decoding. In this paper, a searched region of the domain in the encoding is limited to the range region that is similar with the domain block, and IFS region is a minimum. So, it can be performed a fast decoding by reducing the computational complexity for IFS in fractal image decoding.

  • PDF

Fractal Image Compression using the Minimizing Method of Domain Region (정의역 최소화 기법을 이용한 프랙탈 영상압축)

  • 정태일;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • In this paper, the fractal image compression using the minimizing method of domain region is proposed. It is minimize to domain regions in the process of decoding. Since the conventional fractal decoding applies to IFS(iterative function system) for the total range blocks of the decoded image, its computational complexity is a vast amount. In order to improve this using the number of the referenced times to the domain blocks for the each range blocks, a classification method which divides necessary and unnecessary regions for IFS is suggested. If necessary regions for IFS are reduced, the computational complexity is reduced. The proposed method is to define the minimum domain region that a necessary region for IFS is minimized in the encoding algorithms. That is, a searched region of the domain is limited to the range regions that is similar with the domain regions. So, the domain region is more overlapped. Therefore, there is not influence on image quality or PSNR(peak signal-to-noise ratio). And it can be a fast decoding by reduce the computational complexity for IFS in fractal image decoding.

  • PDF

An Improved Fast Fractal Image Decoding by recomposition of the Decoding Order (복원순서 재구성에 의한 개선된 고속 프랙탈 영상복원)

  • Jeong, Tae-Il;Moon, Kwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.84-93
    • /
    • 2000
  • The conventional fractal decoding was implemented to IFS(iterated function system) for every range regions But a part of the range regions can be decoded without the iteration and there is a data dependence regions In order to decode $R{\times}R$ range blocks, It needs $2R{\times}2R$ domain blocks This decoding can be analyzed to the dependence graph The vertex of the graph represents the range blocks, and the vertex is classified into the vertex of the range and domain The edge indicates that the vertex is referred to the other vertices The in-degree and the out-degree are defined to the number of the edge that is entered and exited, respectively The proposed method is analyzed by a dependence graph to the fractal code, and the decoding order is recomposed by the information of the out-degree That is, If the out-degree of the vertex is zero, then this vertex can be used to the vertex with data dependence Thus, the proposed method can extend the data dependence regions by the recomposition of the decoding order As a result, the Iterated regions are minimized without loss of the image quality or PSNR(peak signal-to-noise ratio), Therefore, it can be a fast decoding by the reducing to the computational complexity for IFS in the fractal Image decoding.

  • PDF

Error Resilience in Image Transmission Using LVQ and Turbo Coding

  • Hwang, Junghyeun;Joo, Sanghyun;Kikuchi, Hisakazu;Sasaki, Shigenobu;Muramatsu, Shogo;Shin, JaeHo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.478-481
    • /
    • 2000
  • In this paper, we propose a joint coding system for still images using source coding and powerful error correcting code schemes. Our system comprises an LVQ (lattice vector quantization) source coding for wavelet transformed images and turbo coding for channel coding. The parameters of the image encoder and channel encoder have been optimized for an n-D (dimension) cubic lattice (D$_{n}$, Z$_{n}$), parallel concatenation fur two simple RSC (recursive systematic convolutional code) and an interleaver. For decoding the received image in the case of the AWGN (additive white gaussian noise) channel, we used an iterative joint source-channel decoding algorithm for a SISO (soft-input soft-output) MAP (maximum a posteriori) module. The performance of transmission system has been evaluated in the PSNR, BER and iteration times. A very small degradation of the PSNR and an improvement in BER were compared to a system without joint source-channel decoding at the input of the receiver.ver.

  • PDF

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Improved Initial Image Estimation Method for a Fast Fractal Image Decoding (고속 프랙탈 영상 부호화를 위한 개선한 초기 영상 추정법)

  • Jeong, Tae-Il;Gang, Gyeong-Won;Mun, Gwang-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.68-75
    • /
    • 1997
  • In this paper, we propose the improved initial image estimation method for a fast fractal image decoding. When the correlation between a domain and a range is given as the linear equation, the value of initial image estimation using the conventional method is the intersection between its linear equation and y=x. If the gradient of linear equation is large, that the difference of the value between each adjacent pixels is large, the conventional method has disadvantage which has the impossibility of exact estimation. The method of the proposed initial image estimation performs well by two steps. he first step can improve the disadvantage of the conventional method. The second step upgrades the range value which was found previous step by referring information of its domain. Though the computational complexity for the initial image estimation increses slightly, the total computational complexity decreases by 30% than that of the conventional method because of diminishing in the number of iterations.

  • PDF

Estimation-based Watermarking Algorithm with Low Density Parity Check (LDPC) Codes (LDPC를 이용한 예측 기반 워터마킹 알고리듬)

  • Lim, Jae-Hyuck;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.76-84
    • /
    • 2007
  • The goal of this paper is to improve the watermarking performance using the following two methods; watermark estimation and low density parity check (LDPC) codes. For a blind watermark decoding, the power of a host image, which is hundreds times greater than the watermark power, is the main noise source. Therefore, a technique that can reduce the effect of the power of the host image to the detector is required. To this end, we need to estimate watermark from the watermarked image. In this paper, the watermark estimation is done by an adaptive estimation method with the generalized Gaussian distribution modeling of sub-band coefficients in the wavelet domain. Since the watermark capacity as well as the error rate can be improved by adopting optimum decoding principles and error correcting codes (ECC), we employ the LDPC codes for the decoding of the estimated watermark. Also, in LDPC codes, the knowledge about the noise power can improve the error correction capability. Simulation results demonstrate the superior performance of the proposed algorithm comparing to LDPC decoding with other estimation-based watermarking algorithms.

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.